Abstract:
A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
Abstract:
A method for making a semiconductor device may include forming first and second spaced apart semiconductor active regions with an insulating region therebetween, forming at least one sacrificial gate line extending between the first and second spaced apart semiconductor active regions and over the insulating region, and forming sidewall spacers on opposing sides of the at least one sacrificial gate line. The method may further include removing portions of the at least one sacrificial gate line within the sidewall spacers and above the insulating region defining at least one gate line end recess, filling the at least one gate line end recess with a dielectric material, and forming respective replacement gates in place of portions of the at least one sacrificial gate line above the first and second spaced apart semiconductor active regions.
Abstract:
A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
Abstract:
A method for semiconductor fabrication includes providing channel regions on a substrate including at least one Silicon Germanium (SiGe) channel region, the substrate including a plurality of regions including a first region and a second region. Gate structures are formed for a first n-type field effect transistor (NFET) and a first p-type field effect transistor (PFET) in the first region and a second NFET and a second PFET in the second region, the gate structure for the first PFET being formed on the SiGe channel region. The gate structure for the first NFET includes a gate material having a first work function and the gate structures for the first PFET, second NFET and second PFET include a gate material having a second work function such that multi-threshold voltage devices are provided.
Abstract:
Dummy gates are removed from a pre-metal layer to produce a first opening (with a first length) and a second opening (with a second length longer than the first length). Work function metal for a metal gate electrode is provided in the first and second openings. Tungsten is deposited to fill the first opening and conformally line the second opening, thus leaving a third opening. The thickness of the tungsten layer substantially equals the length of the first opening. The third opening is filled with an insulating material. The tungsten is then recessed in both the first and second openings using a dry etch to substantially a same depth from a top surface of the pre-metal layer to complete the metal gate electrode. Openings left following the recess operation are then filled with a dielectric material forming a cap on the gate stack which includes the metal gate electrode.
Abstract:
A method for semiconductor fabrication includes providing channel regions on a substrate including at least one Silicon Germanium (SiGe) channel region, the substrate including a plurality of regions including a first region and a second region. Gate structures are formed for a first n-type field effect transistor (NFET) and a first p-type field effect transistor (PFET) in the first region and a second NFET and a second PFET in the second region, the gate structure for the first PFET being formed on the SiGe channel region. The gate structure for the first NFET includes a gate material having a first work function and the gate structures for the first PFET, second NFET and second PFET include a gate material having a second work function such that multi-threshold voltage devices are provided.
Abstract:
A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
Abstract:
A method for semiconductor fabrication includes providing channel regions on a substrate including at least one Silicon Germanium (SiGe) channel region, the substrate including a plurality of regions including a first region and a second region. Gate structures are formed for a first n-type field effect transistor (NFET) and a first p-type field effect transistor (PFET) in the first region and a second NFET and a second PFET in the second region, the gate structure for the first PFET being formed on the SiGe channel region. The gate structure for the first NFET includes a gate material having a first work function and the gate structures for the first PFET, second NFET and second PFET include a gate material having a second work function such that multi-threshold voltage devices are provided.
Abstract:
A method for making a semiconductor device may include forming a gate on a semiconductor layer, forming sidewall spacers adjacent the gate, and forming raised source and drain regions defining a channel in the semiconductor layer under the gate. The raised source and drain regions may be spaced apart from the gate by the sidewall spacers. The method may further include removing the sidewall spacers to expose the semiconductor layer between the raised source and drain regions and the gate, and forming a stress layer overlying the gate and the raised source and drain regions. The stress layer may contact the semiconductor layer between the raised source and drain regions and the gate.
Abstract:
An improved transistor with channel epitaxial silicon and methods for fabrication thereof. In one aspect, a method for fabricating a transistor includes: forming a gate stack structure on an epitaxial silicon region, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; encapsulating the epitaxial silicon region under the gate stack structure with sacrificial spacers formed on both sides of the gate stack structure and the epitaxial silicon region; forming a channel of the transistor having a width dimension that approximates that of the epitaxial silicon region and the gate stack structure, the epitaxial silicon region and the gate stack structure formed on the channel of the transistor; removing the sacrificial spacers; and growing a raised epitaxial source and drain from the silicon substrate, with portions of the raised epitaxial source and drain in contact with the epitaxial silicon region.