摘要:
A magnetoresistive structure having two dielectric layers, and method of manufacturing same, includes a free magnetic layer positioned between the two dielectric layers. The method of manufacture comprises at least two etch processes and at least one encapsulation process interposed therebetween wherein the encapsulation is formed on sidewalls of the partially formed magnetoresistive stack between etch processes. For example, an exemplary method of manufacturing a magnetoresistive device includes etching through a second electrode, second dielectric layer and free magnetic layer to provide a sidewall of (i) an unpinned synthetic antiferromagnetic structure, (ii) a second dielectric layer and (iii) a free magnetic layer; thereafter, forming an encapsulation material on the sidewall of the unpinned synthetic antiferromagnetic structure, second dielectric layer and free magnetic layer, and after forming the encapsulation material, etching through a first dielectric layer.
摘要:
A magnetoresistive device may include an intermediate region positioned between a magnetically fixed region and a magnetically free region, and spin Hall channel region extending around a sidewall of at least the magnetically free region. An insulator region may extend around a portion of the sidewall such that the insulator region contacts a first portion of the sidewall and the spin Hall channel region contacts a second portion of the sidewall.
摘要:
A magnetoresistive stack/structure and method of manufacturing same comprising wherein the stack/structure includes a seed region, a fixed magnetic region disposed on and in contact with the seed region, a dielectric layer(s) disposed on the fixed magnetic region and a free magnetic region disposed on the dielectric layer(s). In one embodiment, the seed region comprises an alloy including nickel and chromium having (i) a thickness greater than or equal to 40 Angstroms (+/−10%) and less than or equal to 60 Angstroms (+/−10%), and (ii) a material composition or content of chromium within a range of 25-60 atomic percent (+/−10%) or 30-50 atomic percent (+/−10%).
摘要:
A magnetoresistive structure having two dielectric layers, and method of manufacturing same, includes a free magnetic layer positioned between the two dielectric layers. The method of manufacture comprises at least two etch processes and at least one encapsulation process interposed therebetween wherein the encapsulation is formed on sidewalls of the partially formed magnetoresistive stack between etch processes. For example, an exemplary method of manufacturing a magnetoresistive device includes etching through a second electrode, second dielectric layer and free magnetic layer to provide a sidewall of (i) an unpinned synthetic antiferromagnetic structure, (ii) a second dielectric layer and (iii) a free magnetic layer; thereafter, forming an encapsulation material on the sidewall of the unpinned synthetic antiferromagnetic structure, second dielectric layer and free magnetic layer, and after forming the encapsulation material, etching through a first dielectric layer.
摘要:
A magnetoresistive stack/structure and method of manufacturing same comprising wherein the stack/structure includes a seed region, a fixed magnetic region disposed on and in contact with the seed region, a dielectric layer(s) disposed on the fixed magnetic region and a free magnetic region disposed on the dielectric layer(s). In one embodiment, the seed region comprises an alloy including nickel and chromium having (i) a thickness greater than or equal to 40 Angstroms (+/−10%) and less than or equal to 60 Angstroms (+/−10%), and (ii) a material composition or content of chromium within a range of 25-60 atomic percent (+/−10%) or 30-50 atomic percent (+/−10%).
摘要:
A method of manufacturing a magnetoresistive stack/structure comprising (a) etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer, (b) depositing a first encapsulation layer on the sidewalls of the second magnetic region and over a surface of the dielectric layer, (c) thereafter: (i) etching the first encapsulation layer which is disposed over the dielectric layer using a first etch process, and (ii) etching re-deposited material using a second etch process, wherein, after such etching, a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region, (d) etching (i) through the dielectric layer to form a tunnel barrier and provide sidewalls thereof and (ii) etching the first magnetic region to provide sidewalls thereof, and (e) depositing a second encapsulation layer on the sidewalls of the tunnel barrier and first magnetic region.
摘要:
Methods for manufacturing magnetoresistive devices are presented in which isolation of magnetic layers in the magnetoresistive stack is achieved by oxidizing exposed sidewalls of the magnetic layers and then depositing additional encapsulating material prior to subsequent etching steps. Etching the magnetic layers using a non-reactive gas further prevents degradation of the sidewalls.
摘要:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
摘要:
A magnetoresistive structure having two dielectric layers, and method of manufacturing same, includes a free magnetic layer positioned between the two dielectric layers. The method of manufacture comprises at least two etch processes and at least one encapsulation process interposed therebetween wherein the encapsulation is formed on sidewalls of the partially formed magnetoresistive stack between etch processes.
摘要:
A magnetoresistive structure having two dielectric layers, and method of manufacturing same, includes a free magnetic layer positioned between the two dielectric layers. The method of manufacture comprises at least two etch processes and at least an encapsulation process interposed therebetween wherein the encapsulation is formed on sidewalls of the partially formed magnetoresistive stack between etch processes.