-
公开(公告)号:US11566231B2
公开(公告)日:2023-01-31
申请号:US16825213
申请日:2020-03-20
申请人: EMULATE, INC.
摘要: An in vitro microfluidic intestine on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic intestinal cell culture, which is some embodiments is derived from patient's enteroids-derived cells, is described comprising L cells, allowing for interactions between L cells and gastrointestinal epithelial cells, endothelial cells and immune cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal autoimmune tissue, e.g., diabetes, obesity, intestinal insufficiency and other inflammatory gastrointestinal disorders. These multicellular-layered microfluidic intestine on-chips further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal duodenum, small intestinal jejunum, small intestinal ileum, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e. healthy, pre-disease and diseased areas. Additionally, these microfluidic gut-on-chips allow identification of cells and cellular derived factors driving disease states and drug testing for reducing inflammation.
-
公开(公告)号:US11506652B2
公开(公告)日:2022-11-22
申请号:US15648293
申请日:2017-07-12
申请人: Emulate Inc.
发明人: Daniel Levner , Kyung JIn Jang , Jacob Fraser , S. Jordan Kerns , Antonio Varone , Dongeun Huh
IPC分类号: C12N5/00 , C12N5/02 , A61K38/00 , C07K2/00 , C07K4/00 , C07K5/00 , C07K7/00 , C07K14/00 , C07K16/00 , C07K17/00 , G01N33/50 , C07K14/78 , C12N5/071 , C12M3/06 , C12M1/00 , C12M1/12 , C12N5/077
摘要: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
-
公开(公告)号:US20210214670A1
公开(公告)日:2021-07-15
申请号:US17160617
申请日:2021-01-28
申请人: Emulate, Inc.
发明人: Daniel Levner , Christopher David Hinojosa , Norman Wen , Antonio Varone , Justin Nguyen , Lina Williamson , S. Jordan Kerns , Catherine Karalis , Geraldine Hamilton , Carol Lucchesi
IPC分类号: C12M1/42 , C12M3/06 , C12M1/12 , G01N33/50 , G01N33/543 , C12M1/00 , C12N5/0793 , C12N5/079 , C12N5/071 , C12N5/077
摘要: A microfluidic device is contemplated comprising an open-top cavity with structural anchors on the vertical wall surfaces that serve to prevent gel shrinkage-induced delamination, a porous membrane (optionally stretchable) positioned in the middle over a microfluidic channel(s). The device is particularly suited to the growth of cells mimicking dermal layers.
-
公开(公告)号:US20210031197A1
公开(公告)日:2021-02-04
申请号:US17024221
申请日:2020-09-17
申请人: EMULATE, Inc.
发明人: S. Jordan Kerns , Riccardo Barrile , Geraldine Hamilton , Catherine Karalis , Daniel Levner , Carolina Lucchesi , Antonio Varone , Remi Villenave
摘要: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas. Additionally, these microfluidic “organ-on-chips” allow identification of cells and cellular derived factors driving disease states in addition to drug testing for reducing inflammation effecting epithelial regions.
-
公开(公告)号:US20180024120A1
公开(公告)日:2018-01-25
申请号:US15648352
申请日:2017-07-12
申请人: Emulate Inc.
发明人: Daniel Levner , Kyung Jin Jang , Jacob Fraser , Jordan Kerns , Antonio Varone , Dongeun Huh
CPC分类号: G01N33/5032 , C12M23/16 , C12M23/20 , C12M25/02 , C12N5/0018 , C12N5/0068 , C12N5/0658 , C12N5/067 , C12N2500/32 , C12N2521/00 , C12N2533/30 , C12N2533/50 , C12N2533/52 , C12N2533/54 , C12N2533/90 , C12N2535/10 , C12N2537/10 , G01N33/5014 , G01N33/5044
摘要: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
-
公开(公告)号:US20180024117A1
公开(公告)日:2018-01-25
申请号:US15648293
申请日:2017-07-12
申请人: Emulate Inc.
发明人: Daniel Levner , Kyung Jin Jang , Jacob Frase , Jordan Kerns , Antonio Varone , Dongeun Huh
CPC分类号: G01N33/5032 , C12M23/16 , C12M23/20 , C12M25/02 , C12N5/0018 , C12N5/0068 , C12N5/0658 , C12N5/067 , C12N2500/32 , C12N2521/00 , C12N2533/30 , C12N2533/50 , C12N2533/52 , C12N2533/54 , C12N2533/90 , C12N2535/10 , C12N2537/10 , G01N33/5014 , G01N33/5044
摘要: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
-
公开(公告)号:US20240076625A1
公开(公告)日:2024-03-07
申请号:US18243242
申请日:2023-09-07
申请人: EMULATE, INC.
发明人: Antonio Varone , Magdalena Kasendra , Carolina Lucchesi , S. Jordan Kerns , Riccardo Barrile , Sonalee Barthakur
CPC分类号: C12N5/0679 , B01L3/502715 , B01L3/502761 , C12M23/16 , C12M23/26 , C12M25/02 , C12N5/069 , G01N1/30 , G01N33/5047 , G01N33/5064 , B01L2200/16 , B01L2300/123 , B01L2300/16 , C12N2500/00 , C12N2501/052 , C12N2501/2301 , C12N2501/2306 , C12N2501/25
摘要: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a rheologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.
-
公开(公告)号:US11833512B2
公开(公告)日:2023-12-05
申请号:US17215900
申请日:2021-03-29
申请人: EMULATE, Inc.
发明人: S. Jordan Kerns , Riccardo Barrile , Geraldine Hamilton , Catherine Karalis , Daniel Levner , Carolina Lucchesi , Antonio Varone , Remi Villenave
CPC分类号: B01L3/502753 , B01L3/502715 , C12M23/16 , C12M29/04 , C12M35/08 , G01N33/5044 , C12N5/0018 , C12N5/0075
摘要: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas. Additionally, these microfluidic “organ-on-chips” allow identification of cells and cellular derived factors driving disease states in addition to drug testing for reducing inflammation effecting epithelial regions.
-
公开(公告)号:US11733234B2
公开(公告)日:2023-08-22
申请号:US15648339
申请日:2017-07-12
申请人: Emulate Inc.
发明人: Daniel Levner , Kyung Jin Jang , Jacob Fraser , S. Jordan Kerns , Antonio Varone , Dongeun Huh
IPC分类号: C12N5/00 , C12N5/02 , A61K38/00 , C07K2/00 , C07K4/00 , C07K5/00 , C07K7/00 , C07K14/00 , C07K16/00 , C07K17/00 , G01N33/50 , C07K14/78 , C12N5/071 , C12M3/06 , C12M1/00 , C12M1/12 , C12N5/077
CPC分类号: G01N33/5032 , C07K2/00 , C07K14/78 , C12M23/16 , C12M23/20 , C12M25/02 , C12N5/0018 , C12N5/0068 , C12N5/067 , C12N5/0658 , G01N33/5014 , C12N2500/32 , C12N2521/00 , C12N2533/30 , C12N2533/50 , C12N2533/52 , C12N2533/54 , C12N2533/90 , C12N2535/10 , C12N2537/10 , G01N33/5044
摘要: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
-
公开(公告)号:US11248203B2
公开(公告)日:2022-02-15
申请号:US17160617
申请日:2021-01-28
申请人: EMULATE, INC.
发明人: Daniel Levner , Christopher David Hinojosa , Norman Wen , Antonio Varone , Justin Nguyen , Lina Williamson , S. Jordan Kerns , Catherine Karalis , Geraldine Hamilton , Carol Lucchesi
IPC分类号: C12M3/06 , C12M1/12 , C12M1/00 , C12M1/42 , G01N33/50 , G01N33/543 , C12N5/0793 , C12N5/079 , C12N5/071 , C12N5/077
摘要: A microfluidic device is contemplated comprising an open-top cavity with structural anchors on the vertical wall surfaces that serve to prevent gel shrinkage-induced delamination, a porous membrane (optionally stretchable) positioned in the middle over a microfluidic channel(s). The device is particularly suited to the growth of cells mimicking dermal layers.
-
-
-
-
-
-
-
-
-