Abstract:
Stochastic or near-stochastic physical characteristics of resistive switching devices are utilized for generating data distinct to those resistive switching devices. The distinct data can be utilized for applications related to electronic identification. As one example, data generated from physical characteristics of resistive switching devices on a semiconductor chip can be utilized to form a distinct identifier sequence for that semiconductor chip, utilized for verification applications for communications with the semiconductor chip or utilized for generating cryptographic keys or the like for cryptographic applications.
Abstract:
Providing for a non-volatile memory architecture having write and overwrite capabilities providing low write amplification to a storage system is described herein. By way of example, a memory array is disclosed comprising blocks and sub-blocks of two-terminal memory cells. The two-terminal memory cells can be directly overwritten in some embodiments, facilitating a write amplification value as low as one. Furthermore, the memory array can have an input-output multiplexer configuration, reducing sneak path currents of the memory architecture during memory operations.
Abstract:
A detection circuit that can detect a two-terminal memory cell changing state. For example, in response to electrical stimuli, a memory cell will change state, e.g., to a defined higher resistance state or a defined lower resistance state. Other, techniques do not detect this state change until after the stimuli is completed and a subsequent sensing operation (e.g., read pulse) is performed. The detection circuit can detect the state change during application of the electrical stimuli that cause the state change and can do so by comparing the magnitudes or values of two particular current parameters.
Abstract:
A detection circuit that can detect a two-terminal memory cell changing state. For example, in response to electrical stimuli, a memory cell will change state (e.g., to a highest resistance state), but existing techniques do not detect this state change until after the stimuli is completed and a subsequent sensing operation (e.g., read pulse) is performed. The detection circuit can detect the state change during application of the electrical stimuli that causes the state change.
Abstract:
Providing for a two-terminal memory architecture that can mitigate sneak path current in conjunction with memory operations is described herein. By way of example, a voltage mimicking mechanism can be employed to dynamically drive un-selected bitlines of the memory architecture at a voltage observed by a selected bitline. According to these aspects, changes observed by the selected bitline can be applied to the un-selected bitlines as well. This can help reduce or avoid voltage differences between the selected bitline and the un-selected bitlines, thereby reducing or avoiding sneak path currents between respective bitlines of the memory architecture. Additionally, an input/output based configuration is provided to facilitate reduced sneak path current according to additional aspects of the subject disclosure.
Abstract:
Providing for resistive random access memory (RRAM) having high read speeds is described herein. By way of example, a RRAM memory can be powered at one terminal by a bitline, and connected at another terminal to a gate of a transistor having a low gate capacitance (relative to a capacitance of the bitline). With this arrangement, a signal applied at the bitline can quickly switch the transistor gate, in response to the RRAM memory being in a conductive state. A sensing circuit configured to measure the transistor can detect a change in current, voltage, etc., of the transistor and determine a state of the RRAM memory from the measurement. Moreover, this measurement can occur very quickly due to the low capacitance of the transistor gate, greatly improving the read speed of RRAM.
Abstract:
Stochastic or near-stochastic physical characteristics of resistive switching devices are utilized for generating data distinct to those resistive switching devices. The distinct data can be utilized for applications related to electronic identification. As one example, data generated from physical characteristics of resistive switching devices on a semiconductor chip can be utilized to form a distinct identifier sequence for that semiconductor chip, utilized for verification applications for communications with the semiconductor chip or utilized for generating cryptographic keys or the like for cryptographic applications.
Abstract:
Stochastic or near-stochastic physical characteristics of resistive switching devices are utilized for generating data distinct to those resistive switching devices. The distinct data can be utilized for applications related to electronic identification. As one example, data generated from physical characteristics of resistive switching devices on a semiconductor chip can be utilized to form a distinct identifier sequence for that semiconductor chip, utilized for verification applications for communications with the semiconductor chip or utilized for generating cryptographic keys or the like for cryptographic applications.
Abstract:
Stochastic or near-stochastic physical characteristics of resistive switching devices are utilized for generating data distinct to those resistive switching devices. The distinct data can be utilized for applications related to electronic identification. As one example, data generated from physical characteristics of resistive switching devices on a semiconductor chip can be utilized to form a distinct identifier sequence for that semiconductor chip, utilized for verification applications for communications with the semiconductor chip or utilized for generating cryptographic keys or the like for cryptographic applications.
Abstract:
Stochastic or near-stochastic physical characteristics of resistive switching devices are utilized for generating data distinct to those resistive switching devices. The distinct data can be utilized for applications related to electronic identification. As one example, data generated from physical characteristics of resistive switching devices on a semiconductor chip can be utilized to form a distinct identifier sequence for that semiconductor chip, utilized for verification applications for communications with the semiconductor chip or utilized for generating cryptographic keys or the like for cryptographic applications.