Abstract:
Proteins are purified by a mixed-mode chromatography system formed by attaching a ligand with cation exchange and hydrophobic functionalities to a large-pore support matrix, the only linkage between the ligand and the support matrix being a chain having a backbone of no more than three atoms between the hydrophobic group and the support matrix.
Abstract:
Proteins are purified by a mixed-mode chromatography system formed by attaching a ligand comprising benzamidoacetic acid to a large-pore support matrix, the only linkage between the ligand and the support matrix being a chain having a backbone of no more than three atoms between a phenyl ring and the support matrix.
Abstract:
Proteins are purified by a mixed-mode chromatography system formed by attaching a ligand with cation exchange and hydrophobic functionalities to a large-pore support matrix, the only linkage between the ligand and the support matrix being a chain having a backbone of no more than three atoms between the hydrophobic group and the support matrix.
Abstract:
The subject invention pertains to proteins are purified by a mixed-mode chromatography system formed by attaching a ligand with cation exchange and hydrophobic 1,3-dioxoisoindolin-2-yl group functionalities to a large-pore support matrix, the only linkage between the ligand and the support matrix being a chain having a backbone of one, two, three, four, or five atoms between the hydrophobic group and the support matrix.
Abstract:
Solid supports and ligands are provided for purification of biomolecules by mixed-mode anion exchange-hydrophobic chromatography. Compositions can have the formula Support-(X)—N(R1, R2)-R3-L-Ar, or a salt thereof, wherein: Support is a chromatographic solid support; X is a spacer or absent; R1 and R2 are each selected from hydrogen and an alkyl comprising 1-6 carbons; R3 is an alkyl comprising 1-6 carbons or a cyclo alkyl comprising 1-6 carbons; L is NR4, O, or S; wherein R4 is hydrogen or an alkyl comprising 1-6 carbons; and Ar is an aryl. Methods are also provided for using solid supports and ligands to purify biomolecules such as monomeric antibodies.
Abstract:
Methods and kits for purifying protein-nanoparticle conjugates are provided. In some embodiments, a multimodal medium having a size exclusion mode and a capture mode is used to purify the protein-nanoparticle conjugates.