Abstract:
A brazing operation, using a silver-copper alloy preform in a temperature range of from 800.degree. C. to 1100.degree. C., is employed to attach either radial or axial conductive leads to ceramic non-linear resistors or capacitors, thereby eliminating the necessity of titanium-silver vacuum deposition or conductive cermet application prior to lead attachment. Glass encapsulation may be accomplished simultaneous with the brazing operation to further reduce cost.
Abstract:
A low cost two step process for attaching conductive leads and heat dissipating elements and for encapsulating a ceramic non-linear resistor pellet is described. Low temperature soldering techniques are utilized to assemble the device. Low temperature soldering is made feasible by the treatment of the attaching surfaces of the pellet with a dilute solution of acid for reducing the oxide surface to a pure metal in preparation for soldering.
Abstract:
An electrical contact and method for making an electrical contact allows a flat contact (404) to be formed early in the process of making an electronic device. The flat contact (404) is level with the remainder of the substrate (116) in which it is formed. The flat contact (404) does not interfere with any required subsequent process steps. The flat contact can be reflowed to form a ball contact (302) which protrudes above the top of the substrate (120) to which it is attached.
Abstract:
A plurality of inserts (12) formed on a first substrate (11). A plurality of sockets (14) formed on a second substrate (13). Each socket of the plurality of sockets (14) on the second substrate (13) has a corresponding insert from the plurality of inserts (12) which physically aligns for coupling. At least one of the first (11) or second (13) substrates must be a semiconductor substrate. This arrangement allows for electrically connecting a semiconductor device or structure to another device for testing, burn-in, or final assembly.
Abstract:
A method for making an integrated circuit package includes the steps of fabricating lead frames from a copper-zinc-silicon beta brass alloy and soldering the leads thereof to semi-conductor chips by use of the shape memory and reverse shape memory characteristic of the alloy. The composition of the lead frame material and the choice and sequence of fabrication steps may be varied.
Abstract:
A modular headlamp assembly includes a low beam headlamp module, a high beam headlamp module, and front turn/parking lamp module. The low beam headlamp module and the high beam headlamp module are supported by a reflector carrier. Each of the high and low beam headlamp modules includes a heat sink and mounting assembly with a heat sink portion bisecting a reflector member. The headlamp includes a lens with a wire heating element embedded therein and a wire heating element circuit board affixed to the lens. A thermistor is affixed to the lens for sensing when the lens reaches a predetermined condition and a micro-controller is provided for activating or deactivating the wire heating element based on the predetermined condition sensed by the thermistor.
Abstract:
A one step metallization is disclosed for applying a layer of gold or gold alloy to the back of a silicon substrate to facilitate bonding that substrate to a metallized package member. The gold is applied to the substrate, for example by evaporation, while the substrate is maintained at a temperature between about 200.degree. C. and about 360.degree. C. Following the deposition the substrate is quickly cooled to room temperature. The thickness of the gold layer and the deposition temperature are adjusted to insure that the silicon diffusion profile is contained within the gold film during deposition. This insures good adhesion of the gold to the silicon substrate and provides a pure gold surface layer necessary for optimum bonding of the semiconductor substrate to a metallized package portion.
Abstract:
A modular headlamp assembly includes a low beam headlamp module, a high beam headlamp module, and front turn/parking lamp module. The low beam headlamp module and the high beam headlamp module are supported by a reflector carrier. Each of the high and low beam headlamp modules includes a heat sink and mounting assembly with a heat sink portion bisecting a reflector member. The headlamp includes a lens with a wire heating element embedded therein and a wire heating element circuit board affixed to the lens. A thermistor is affixed to the lens for sensing when the lens reaches a predetermined condition and a micro-controller is provided for activating or deactivating the wire heating element based on the predetermined condition sensed by the thermistor.
Abstract:
A semiconductor package for an electrical component which has a metal or metal alloy leadframe with first and second surface, which leadframe is adapted to have an electrical component connected thereto. The leadframe is bonded by means of a polymer to a copper or copper alloy base member. The leadframe is also bonded by means of a polymer to a copper or copper alloy cap member. The cap and base members have coated to their inside surfaces a metal or metal alloy. The coating improves the polymer bond between the leadframe and the base and cap members. The surface area of the base member is increased to transfer more heat from the silicon chip in the semiconductor package and to reduce the thermal stresses between the silicon chip and the base member.