Abstract:
A method of forming a colloidal dispersion includes providing a first continuous material flow, providing a second continuous material flow, combining the first and second continuous material flows, and moving a continuous flow of a colloidal dispersion in a direction downstream of the first and second continuous flows. The first continuous material flow includes one or more of a diluent (e.g., deionized water), a base, and an acid, and the second continuous material flow includes an abrasive particle solution. The first and second material flows are combined with a Reynolds number greater than about 4400 and less than about 25000 (e.g., about 7400 to about 25000). The colloidal dispersion includes the diluent, the base, the acid, and abrasive particles from the abrasive particle solution.
Abstract:
Fluid processing apparatuses and systems are disclosed. In some embodiments the fluid processing apparatuses include a movable enclosure, a plurality of filter housings disposed substantially within the movable enclosure, and a stand disposed within the enclosure. The filter housings are in fluid communication with one another. Each filter housing defines an elongate path and is configured to support a respective filter along the elongate flow path to filter a substantially continuous flow of fluid. The stand supports each filter housing such that the elongate flow path of each filter housing is substantially parallel to a vertical axis, wherein each filter housing is independently rotatable, relative to the stand.
Abstract:
Fluid processing apparatuses and systems are disclosed. In some embodiments the fluid processing apparatuses include a movable enclosure, a plurality of filter housings disposed substantially within the movable enclosure, and a stand disposed within the enclosure. The filter housings are in fluid communication with one another. Each filter housing defines an elongate path and is configured to support a respective filter along the elongate flow path to filter a substantially continuous flow of fluid. The stand supports each filter housing such that the elongate flow path of each filter housing is substantially parallel to a vertical axis, wherein each filter housing is independently rotatable, relative to the stand.
Abstract:
A method of manufacturing a colloidal silica dispersion, by dissolving a fumed silica in an aqueous solvent having an alkali metal hydroxide to produce an alkaline silicate solution; removing the alkali metal via ion exchange to produce a silicic acid solution; adjusting the temperature, concentration and pH of the silicic acid solution to values sufficient to initiate nucleation and particle growth at elevated temperatures; and cooling the silicic acid solution at a rate sufficient to produce the colloidal silica dispersion. The colloidal silica particles in the colloidal silica dispersion have a mean particle size about 2 nm to about 100 nm. Also provided is a method of chemical mechanical polishing a surface of a substrate by contacting the substrate and a composition having a plurality of colloidal silica particles according to the present invention and a medium for suspending the particles. The contacting is carried out at a temperature and for a period of time sufficient to planarize the substrate.
Abstract:
In accordance with the invention, there is provided a chemical-mechanical polishing slurry for polishing a substrate. The slurry is comprised primarily of abrasive particles and an oxidizing agent, wherein the slurry exhibits a stability having a shelf life of at least 30 days.
Abstract:
This invention relates to a CMP slurry system for use in semiconductor manufacturing. The slurry system comprises two parts. The first part is a generic dispersion that only contains an abrasive and, optionally, a surfactant and a stabilizing agent. The generic dispersion can be used for polishing metals as well as interlayer dielectrics (ILD). The second part is a novel activator solution comprising at least two components selected from the group consisting of: an oxidizer, acids, amines, chelating agents, fluorine-containing compounds, corrosion inhibitors, buffering agents, surfactants, biological agents and mixtures thereof.
Abstract:
An electronic package having improved electrical properties in which a plastic Quad Flat Pack is provided with upper and lower metallic plates encased in the plastic body and overlapping at least a portion of the length of the encased portion of the leads whereby the self and mutual inductance of the package is reduced. A ceramic Quad Flat Pack is provided with metal plates attached to the mating surfaces of the ceramic cover component and the ceramic base component so that at least a portion of the enclosed portion of the leads which are electrically connected to the electronic component inside the components is overlapped on the top and bottom by the metallic plates.
Abstract:
There is provided a leadframe assembly for supporting a hybrid circuit. The hybrid circuit is supported by either the base of an electronic package or by a die attach paddle and electrically interconnected to a leadframe by wire bonds. A plurality of semiconductor devices are mounted on the assembly and supported by either metallization pads formed on the hybrid circuit, a dielectric layer of the hybrid circuit, a die attach paddle, a metallic package component or combinations thereof.
Abstract:
There is provided an electronic package where the package components define a cavity. A semiconductor device and a portion of a leadframe occupy part of the cavity. Substantially the remainder of the cavity is filled with a compliant polymer, such as a silicone gel. Since the cavity is no longer susceptible to gross leak failure, the seal width of adhesives used to assemble the package may be reduced, thereby increasing the area available for mounting the semiconductor device.
Abstract:
There is provided a molded plastic electronic package having improved thermal dissipation. A heat spreader, formed from aluminum or an aluminum alloy, is partially encapsulated in the molding resin. Forming a black anodization layer on the surface of the heat spreader improves both thermal dissipation and adhesion to the molding resin.