Abstract:
In erasing, electrons are simultaneously injected into floating gates from sources of a plurality of memory cells. Thus, the threshold voltages of the plurality of memory cells are increased. In programming, electrons are emitted from a floating gate of a selected memory cell to a drain. Thus, the threshold voltage of the selected memory cell is reduced.
Abstract:
A nonvolatile semiconductor memory device comprises a random access memory (RAM) and an electrically programmable and erasable read only memory (EEPROM). Since a capacitance (106) is formed between a control gate (103) and a drain (102) of a memory transistor, and a source of the memory transistor is rendered to be floating in the RAM write and read operation and in the EEPROM write operation and is supplied with a finite potential in EEPROM read operation, the operation of nonvolatile memory is achieved. A sense amplifier (15, 16) is amplified the potential difference between a bit line (BL) and a control gate line (CGL) is both memory operation and latches the input data in both write operation, such that the potential of the BL and the CGL are determined low or high potential. Besides in the EEPROM write operation, after latching the input data in the sense amplifier, a nonvolatile program is started such that a BL or a CGL is pumped up to program voltage (15-20 V). In the EEPROM read operation, a BL and a CGL are pre-changed in a different potential (BL CGL). After that, the sense amplifier is activated and the EEPROM data is read out.
Abstract:
Each of the memory cells forming a nonvolatile RAM comprises one floating-gate transistor and one capacitor. When the power source is turned on, storage of information is performed according to the amount of electric charge stored in each capacitor. When the power source is turned off, nonvolatile storage of information is performed according to the level of the threshold voltage of each floating-gate transistor.
Abstract:
A semiconductor memory device in which an output of a reference voltage generator for defining the height of a programming high-voltage pulse is changed according to the thickness of a tunnel oxide film and/or a floating gate oxide film of a memory transistor so that a shift amount of a threshold voltage of an EEPROM is maintained at a constant value if the thickness of the oxide films is deviated from a designed value.
Abstract:
In erasing, electrons are simultaneously injected into floating gates from sources of a plurality of memory cells. Thus, the threshold voltages of the plurality of memory cells are increased. In programming, electrons are emitted from a floating gate of a selected memory cell to a drain. Thus, the threshold voltage of the selected memory cell is reduced.
Abstract:
A column latch and a high voltage switch connected to each bit line are eliminated, and an address counter and the data latch are newly provided. The data latch is arranged between an I/O buffer and a Y gate. In a programming cycle, the address counter is activated and transfer gates in the Y gate are successively selected. Consequently, a high voltage Vpp or 0 V is applied periodically to bit lines in the memory cell array in accordance with the write data stored in the data latch.
Abstract:
There is a case where a memory cell brought to an over-erase (depletion) state if the erasing time is too long, for example, in an electrically erasable non-volatile semiconductor memory device. In this case, the transistor constituting the memory cell is always in ON state and causes erroneous operation. Therefore, it is detected whether there is any memory cell in the over-erase state or not after erasing in each memory cell, and if any memory cell is detected being in the over-erase state, tunnel writing is performed in each memory cell. Specifically, electrons are injected into the floating gate of the transistor constituting each memory cell by a tunnel phenomenon. This causes the memory cell in the over-erase state to recover to a normal state. Detection of the over-erase state and recovery from it are performed by an over-erase correcting circuit 72.
Abstract:
In a programming mode of operation of a flash type non-volatile semiconductor memory device, an erase voltage pulse is applied a memory cell to bring the memory cell into an erased state. Then, an after-erase writing operation is executed for a memory cell having a threshold voltage lower than a predetermined threshold voltage under the condition of small change in threshold voltage. Alternatively, an erase voltage pulse is applied only to a memory cell having a threshold voltage greater than a predetermined threshold voltage to carry out erasing. Also, after a memory cell is brought to a depletion state by application of an erase voltage pulse, data writing of "0" and "1" is carried out by injection of electrons into the floating gate. The electron injection rate to the floating gate for writing data "0" is set to be greater than that for writing data "1". The state of storing data "1" corresponds to an erase state. According to this scheme, an excessively erased memory cell does not exist and the distribution range of threshold voltage can be reduced. Furthermore, the reprogramming time period for a memory cell data can be carried out in a short time.
Abstract:
A flash EEPROM including a memory cell array divided into first and second blocks. Erase pulse applying circuits for applying erase pulses to memory cells and erase verifying circuits for erase-verifying the memory cells are provided one for each of those two blocks. The erase pulse applying circuit and the erase verifying circuit provided corresponding to the first block operate separately from the erase pulse applying circuit and the erase verifying circuit provided corresponding to the second block. The erase pulse applying circuits are each controlled by their corresponding erase verifying circuits. That is, each erase verifying circuit enables its corresponding erase pulse applying circuit only when detecting a memory cell in which a data erase is incomplete in the corresponding block.
Abstract:
An electrically programmable non-volatile semiconductor memory device includes a plurality of internal data transmission lines. Data communication between memory cells and the internal data transmission lines is performed for a byte of data having a plurality of bits. Each of the word lines includes a plurality of divided auxiliary word lines in association with the internal data transmission lines. Those memory cells for each word line that are to be connected to the same internal data transmission line are connected to one auxiliary word line. Only one of a plurality of memory cells connected to one auxiliary word line is connected to an internal data transmission line in operation. Therefore, a plurality of the memory cells connected to different auxiliary word lines, are connected in parallel to a plurality of the internal data transmission lines. According to this arrangement, the effect of word line destruction occasionally caused in one auxiliary word line is not extended to other auxiliary word lines, so that the damaged auxiliary word line can be repaired by the use of an error correction detection code.