Abstract:
A semiconductor memory device according to an embodiment comprises: a semiconductor substrate; and a memory cell block formed on the semiconductor substrate and configured having a plurality of memory cell arrays, each of the memory cell arrays including a plurality of column lines, a plurality of row lines, and a plurality of memory cells disposed at each of intersections of the plurality of column lines and the plurality of row lines, each of the memory cells including a variable resistance element having a transition metal oxide as a material, at least one of the plurality of column lines and the plurality of row lines being a polysilicon wiring line having polysilicon as a material, and the memory cell block including a block film between the variable resistance element of the memory cell and the polysilicon wiring line.
Abstract:
A nonvolatile semiconductor memory device includes: a first interconnect; a second interconnect at a position opposing the first interconnect; and a variable resistance layer between the first interconnect and the second interconnect, the variable resistance layer being capable of reversibly changing between a first state and a second state by a voltage applied via the first interconnect and the second interconnect or a current supplied via the first interconnect and the second interconnect, the first state having a first resistivity, the second state having a second resistivity higher than the first resistivity. Wherein the variable resistance layer has a compound of carbon and silicon as a main component and including hydrogen.
Abstract:
According to one embodiment, a method is disclosed for manufacturing a nonvolatile memory device. The nonvolatile memory device includes a memory cell connected to a first interconnect and a second interconnect. The method can include forming a first electrode film on the first interconnect. The method can include forming a layer including a plurality of carbon nanotubes dispersed inside an insulator on the first electrode film. At least one carbon nanotube of the plurality of carbon nanotubes is exposed from a surface of the insulator. The method can include forming a second electrode film on the layer. In addition, the method can include forming a second interconnect on the second electrode film.
Abstract:
According to one embodiment, a memory cell includes a resistance change layer, an upper electrode layer, a lower electrode layer, a diode layer, a first oxide film, and a second oxide film. The upper electrode layer is arranged above the resistance change layer. The lower electrode layer is arranged below the resistance change layer. The diode layer is arranged above the upper electrode layer or below the lower electrode layer. The first oxide film exists on a side wall of at least one electrode layer of the upper electrode layer or the lower electrode layer. The second oxide film exists on a side wall of the diode layer. The film thickness of the first oxide film is thicker than a film thickness of the second oxide film.
Abstract:
According to one embodiment, a nonvolatile memory device includes a memory cell. The memory cell is connected to a first interconnection and a second interconnection and includes a plurality of layers. The plurality of layers includes a memory layer and a carbon nanotube-containing layer which is in contact with the memory layer and contains a plurality of carbon nanotubes.
Abstract:
This nonvolatile semiconductor memory device comprises a memory cell array including memory cells arranged therein. Each of the memory cells is located at respective intersections between first wirings and second wirings and includes a variable resistance element. The variable resistance element comprises a thin film including carbon (C). The thin film includes a side surface along a direction of a current flowing in the memory cell. The side surface includes carbon nitride (CNx).
Abstract:
According to one embodiment, a non-volatile semiconductor memory device includes: a first line; a second line intersecting with the first line; and a memory cell arranged at a position where the second line intersects with the first line, wherein, the memory cell includes: a variable resistance element; and a negative resistance element connected in series to the variable resistance element.
Abstract:
According to one embodiment, a nonvolatile memory device includes a memory layer and a driver section. The memory layer has a first state having a first resistance under application of a first voltage, a second state having a second resistance higher than the first resistance under application of a second voltage higher than the first voltage, and a third state having a third resistance between the first resistance and the second resistance under application of a third voltage between the first voltage and the second voltage. The driver section is configured to apply at least one of the first voltage, the second voltage and the third voltage to the memory layer to record information in the memory layer.
Abstract:
According to one embodiment, a method is disclosed for manufacturing a nonvolatile memory device. The nonvolatile memory device includes a memory cell connected to a first interconnect and a second interconnect. The method can include forming a first electrode film on the first interconnect. The method can include forming a layer including a plurality of carbon nanotubes dispersed inside an insulator on the first electrode film. At least one carbon nanotube of the plurality of carbon nanotubes is exposed from a surface of the insulator. The method can include forming a second electrode film on the layer. In addition, the method can include forming a second interconnect on the second electrode film.
Abstract:
According to one embodiment, a non-volatile semiconductor memory device includes: a first line; a second line intersecting with the first line; and a memory cell arranged at a position where the second line intersects with the first line, wherein, the memory cell includes: a variable resistance element; and a negative resistance element connected in series to the variable resistance element.