Abstract:
A circuit board surface structure includes a circuit board having at least one surface provided with a plurality of electrically connecting pads, an insulating protective layer characterized by photosensitivity and solder resisting and formed on the circuit board, and a plurality of openings formed in the insulating protective layer to expose the electrical connecting pads on the circuit board and tapered upward; and a conductive element formed in the opening, so as to increase the contact area and reinforce bonding between the electrically connecting pads and the conductive element.
Abstract:
A package substrate and a manufacturing method thereof are provided, including: forming a solder mask on a package substrate body having a plurality of conductive pads; forming a plurality of first-step openings in the solder mask by exposure and development; forming a plurality of second-step openings in the solder mask by a laser-based or plasma-based drilling process; and removing a solder mask foot from the bottom of each of the first-step openings so as to expose large surface areas of the conductive pads. Hence, the contact area between a conductive element and a corresponding one of the conductive pads is large enough to enhance bonding and electrical connection therebetween.
Abstract:
A semiconductor package substrate structure and a manufacturing method thereof are disclosed. The structure includes a substrate having a plurality of electrical connecting pads formed on at least one surface thereof; a plurality of electroplated conductive posts each covering a corresponding one of the electrical connecting pads and an insulating protective layer formed on the surface of the substrate and having a revealing portion for exposing the electroplated conductive posts therefrom. The invention allows the interval between the electroplated conductive posts to be minimized, the generation of concentrated stresses and the overflow of underfill to be avoided, as well as the reduction of the overall height of the fabricated package.
Abstract:
A semiconductor package substrate includes a main body with a surface having a first circuit layer thereon and a dielectric layer covering the first circuit layer, with a plurality of vias on a portion of the first circuit layer; a plurality of first conductive vias disposed in the vias; a plurality of first electrically connecting pads on the first conductive vias and completely exposed on the dielectric layer having no extending circuits for a semiconductor chip to be mounted thereon, the first electrically connecting pad being electrically connected to the first circuit layer of the first conductive via; and an insulating protective layer disposed on the main body with an opening for completely exposing the first electrically connecting pads, whereby the circuit layout density is increased without disposing circuits between the electrically connecting pads.
Abstract:
A semiconductor package substrate includes a main body with a surface having a first circuit layer thereon and a dielectric layer covering the first circuit layer, with a plurality of vias on a portion of the first circuit layer; a plurality of first conductive vias disposed in the vias; a plurality of first electrically connecting pads on the first conductive vias and completely exposed on the dielectric layer having no extending circuits for a semiconductor chip to be mounted thereon, the first electrically connecting pad being electrically connected to the first circuit layer of the first conductive via; and an insulating protective layer disposed on the main body with an opening for completely exposing the first electrically connecting pads, whereby the circuit layout density is increased without disposing circuits between the electrically connecting pads.
Abstract:
A circuit board surface structure includes a circuit board having at least one surface provided with a plurality of electrically connecting pads, an insulating protective layer characterized by photosensitivity and solder resisting and formed on the circuit board, and a plurality of openings formed in the insulating protective layer to expose the electrical connecting pads on the circuit board and tapered upward; and a conductive element formed in the opening, so as to increase the contact area and reinforce bonding between the electrically connecting pads and the conductive element.
Abstract:
The conductive connection structure of the present invention comprises a circuit board, a plurality of conductive pads, a solder mask layer, an electroless plating copper layer, and an electroless plating adhesive layer. The manufacturing method comprises the following steps: providing the circuit board having a plurality of conductive pads thereon; forming the solder mask layer, the electroless plating copper layer, and the electroless plating adhesive layer respectively on the surface of the circuit board, and forming a solder bump on the electroless plating adhesive layer. By the assistance of the conductive connection structure and the manufacturing method thereof, cavity otherwise formed on the conductive pads can be prevented, and the solder bumps therefore are firmly fixed on the conductive pads. Moreover, the stress in the surface between the solder bump and the conductive pad can be reduced as the semiconductor chip and the circuit board are combined.
Abstract:
A method for fabricating an electrically connecting structure of a circuit board is proposed. An insulating protecting layer is formed on a circuit board having electrically connecting pads and has openings to expose the electrically connecting pads. A resist layer with openings corresponding to the electrically connecting pads is formed on a conductive layer formed on the insulating protecting layer. A metal layer is formed in the openings of the resist layer and fills the openings. The resist layer is removed. The metal layer and the conductive layer on the surface of the insulating protecting layer are removed by thinning processing, so as to form a metal bump. An adhesive layer is formed on an exposed surface of the metal bump, so as to form the electrically connecting structure for electrically connecting the circuit board to an external electronic device.
Abstract:
A method for fabricating conductive bumps of a circuit board is proposed. First of all, a circuit board having a first surface and a corresponding second surface is provided. A circuit structure having a plurality of conductive pads is formed on each of the first surface and the second surface, and conductive structures are formed in the circuit board for electrically connecting the circuit structures. Also, an insulating layer having a plurality of openings penetrating therethrough is formed on the circuit board for exposing the conductive pad. Then, a conductive layer is formed on a surface of the insulating layer having the opening formed on the first surface of the circuit board. An electroplating process is performed via the conductive layer and the conductive structure, such that a conductive bump is formed on the conductive pad located on the second surface of the circuit board. Subsequently, a resist layer is formed on the second surface of the circuit board to cover the conductive bump, and another resist layer having openings penetrating therethrough is formed on the first surface of the circuit board to expose the conductive pad. Finally, a conductive bump is formed on the conductive pad located on the first surface of the circuit board by an electroplating process. By such arrangement, the conductive bumps are successively formed on the first surface and the second surface of the circuit board.
Abstract:
A circuit board having an electrically connecting structure and a method for fabricating the same are provided. A circuit board body having inner-layer circuits is provided. A circuit layer is formed on at least an outermost surface of circuit board body, and including electrically connecting pads and circuits. The electrically connecting pads are partially electrically connected to the circuits, and are partially electrically connected to the inner-layer circuits via conductive vias. An insulating protective layer is disposed on the circuit board body and is formed with openings therein for exposing the electrically connecting pads. Conductive posts are formed on the electrically connecting pads. Standalone metal pads are formed on the insulating protective layer but are not used for electrical connection. The conductive posts and electrically connecting pads are absent from the insulating protective layer beneath the standalone metal pads, such that circuits can be formed under the insulating protective layer.