Abstract:
A method of comb-based spectroscopy for measuring a CW source at time-bandwidth limited resolution by using frequency combs with a high degree of mutual coherence (
Abstract:
A spin transport channel includes a dielectric layer contacting a conductive layer. The dielectric layer includes at least one of a tantalum oxide, hafnium oxide, titanium oxide, and nickel oxide. An intermediate spin layer contacts the dielectric layer. The intermediate spin layer includes at least one of copper and silver. The conductive layer is more electrochemically inert than the intermediate spin layer. A polarizer layer contacts the intermediate spin layer. The polarizer layer includes one of a nickel-iron based material, iron, and cobalt based material. The conductive layer and intermediate layer are disposed on opposite sides of the dielectric layer. The dielectric layer and the polarizer layer are disposed on opposite sides of the intermediate spin layer. The intermediate spin layer is arranged to form a conducting path through the dielectric layer configured to transport a plurality of electrons. Each of the plurality of electrons maintains a polarized electron spin.
Abstract:
A microwave-frequency source at frequency fM comprises: a dual optical-frequency reference source, an electro-optic sideband generator, an optical bandpass filter, an optical detector, a reference oscillator, an electrical circuit, and a voltage-controlled oscillator (VCO). The sideband generator modulates dual optical reference signals at v2 and v1 to generate sideband signals at v1±n1fM and v2±n2fM. The bandpass filter transmits sideband signals at v1+N1fM and v2−N2fM. The optical detector generates a beat note at (v2−N2fM)−(v1+N1fM). The beat note and a reference oscillator signal are processed by the circuit to generate a loop-filtered error signal to input to the VCO. Output of the VCO at fM drives the sideband generator and forms the microwave-frequency output signal. The resultant frequency division results in reduced phase noise on the microwave-frequency signal.
Abstract:
Systems and methods for determining a safety level of a network vulnerable to attack from at least one origin to at least one target are described. Machines, components, and vulnerabilities in a network may be associated to one another. Degrees of similarity among the vulnerabilities may be determined and subsets of vulnerabilities may be grouped based on their determined degrees of similarity to one another. This data may be used to generate an attack graph describing exploitation of vulnerabilities and grouped vulnerabilities and defining vulnerability exploit condition relationships between at least one origin and at least one target. The attack graph may be analyzed using a k-zero day metric function to determine a safety level.
Abstract:
A spin transport channel includes a dielectric layer contacting a conductive layer. The dielectric layer includes at least one of a tantalum oxide, hafnium oxide, titanium oxide, and nickel oxide. An intermediate spin layer contacts the dielectric layer. The intermediate spin layer includes at least one of copper and silver. The conductive layer is more electrochemically inert than the intermediate spin layer. A polarizer layer contacts the intermediate spin layer. The polarizer layer includes one of a nickel-iron based material, iron, and cobalt based material. The conductive layer and intermediate layer are disposed on opposite sides of the dielectric layer. The dielectric layer and the polarizer layer are disposed on opposite sides of the intermediate spin layer. The intermediate spin layer is arranged to form a conducting path through the dielectric layer configured to transport a plurality of electrons. Each of the plurality of electrons maintains a polarized electron spin.
Abstract:
Methods of detecting the presence of toxins in a sample using electrophoretic separations and of performing electrophoretic separation of complex samples are provided. The method of detecting the presence of toxins includes reacting a sample and a substrate with a signaling enzyme which converts the substrate to the product in a reaction medium, introducing a run buffer into a separation channel having an inlet end, selectively introducing at least one of the substrate and the product of the reaction medium into the inlet end of the separation channel, electrophoretically separating the substrate and the product, and determining the rate of conversion of the substrate to the product, wherein a change in the rate of conversion is indicative of the presence of toxins. The method of performing electrophoretic separations of complex samples having charged particulates and oppositely charged analytes comprising introducing a run buffer into a separation channel having an inlet end, selectively introducing the oppositely charged analytes in the complex sample into the separation channel, and electrophoretically separating the charged particulates and the oppositely charged analytes. Additionally, a device for varying with respect to time the bulk flow of a fluid in a separation channel of an electrophoretic device having a buffer reservoir in fluid contact with the separation channel is provided. The device includes a pressure sensor in fluid contact with a buffer reservoir, a high pressure reservoir in selective fluidic communication with the buffer reservoir, a low pressure reservoir in selective fluidic communication with the buffer reservoir and in fluidic communication with the high pressure reservoir, and a pumping device for pumping a gas from the low pressure reservoir to the high pressure reservoir.
Abstract:
Pulse tube refrigeration or cooling systems are described which utilize a secondary regenerator or a secondary pulse tube. Use of such a secondary regenerator or pulse tube enables a commercially available pressure oscillator to be incorporated in the cooling system. The commercially available oscillator can be operated at room temperature or approximately so.
Abstract:
The invention is directed to methods and systems for early detection of viral diseases, and more specifically to systems and methods for early detection of viral diseases that are capable of detecting very low viral loads, such as for example and not limitation, SARS-CoV-2 loads.
Abstract:
A cold cathode field emission electron source capable of emission at levels comparable to thermal sources is described. Emission in excess of 6 A/cm2 at 7.5 V/μm is demonstrated in a macroscopic emitter array. The emitter has a monolithic and rigid porous semiconductor nanostructure with uniformly distributed emission sites, and is fabricated through a room temperature process which allows for control of emission properties. These electron sources can be used in a wide range of applications, including microwave electronics and x-ray imaging for medicine and security.
Abstract translation:描述了能够以与热源相当的水平发射的冷阴极场致发射电子源。 在宏观发射极阵列中证明了在7.5V /μm下超过6A / cm 2的发射。 发射器具有均匀分布的发射位点的单片和刚性多孔半导体纳米结构,并且通过允许控制发射特性的室温工艺制造。 这些电子源可用于广泛的应用,包括微波电子学和医学和安全性的x射线成像。
Abstract:
Various aspects are described for selectivity capturing cells or bioparticles on designated surfaces in dielectrophoretic systems and processes. A particular adhesive composition is described for enhancing cell retention. In addition, certain permeable polyester membranes used in the systems and processes are also described.