摘要:
A graphene layer is formed on a crystallographic surface having a non-hexagonal symmetry. The crystallographic surface can be a surface of a single crystalline semiconductor carbide layer. The non-hexagonal symmetry surface of the single crystalline semiconductor carbide layer is annealed at an elevated temperature in ultra-high vacuum environment to form the graphene layer. During the anneal, the semiconductor atoms on the non-hexagonal surface of the single crystalline semiconductor carbide layer are evaporated selective to the carbon atoms. As the semiconductor atoms are selectively removed, the carbon concentration on the surface of the semiconductor-carbon alloy layer increases. Despite the non-hexagonal symmetry of the surface of the semiconductor-carbon alloy layer, the remaining carbon atoms can coalesce to form a graphene layer having hexagonal symmetry.
摘要:
An ultra low-k dielectric material layer is formed on a semiconductor substrate. In one embodiment, a grid of wires is placed at a distance above a top surface of the ultra low-k dielectric material layer and is electrically biased such that the total electron emission coefficient becomes 1.0 at the energy of electrons employed in electron beam curing of the ultra low-k dielectric material layer. In another embodiment, a polymeric conductive layer is formed directly on the ultra low-k dielectric material layer and is electrically biased so that the total electron emission coefficient becomes 1.0 at the energy of electrons employed in electron beam curing of the ultra low-k dielectric material layer. By maintaining the total electron emission coefficient at 1.0, charging of the substrate is avoided, thus protecting any device on the substrate from any adverse changes in electrical characteristics.
摘要:
A silicon photonic chip is provided. An active silicon layer that includes a photonic device is on a front side of the silicon photonic chip. A silicon substrate that includes an etched backside cavity is on a backside of the silicon photonic chip. A microlens is integrated into the etched backside cavity. A buried oxide layer is located between the active silicon layer and the silicon substrate. The buried oxide layer is an etch stop for the etched backside cavity.
摘要:
The present disclosure provides a semiconductor structure including a nanoribbon-containing layer of alternating graphene nanoribbons separated by alternating insulating ribbons. The alternating graphene nanoribbons are parallel to a surface of an underlying substrate and, in some embodiments, might be oriented along crystallographic directions of the substrate. The alternating insulating ribbons may comprise hydrogenated graphene, i.e., graphane, fluorinated graphene, or fluorographene. The semiconductor structure mentioned above can be formed by selectively converting portions of an initial graphene layer into alternating insulating ribbons, while the non-converted portions of the initial graphene form the alternating graphene nanoribbons. Semiconductor devices such as, for example, field effect transistors, can be formed atop the semiconductor structure provided in the present disclosure.
摘要:
A graphene layer is formed on a crystallographic surface having a non-hexagonal symmetry. The crystallographic surface can be a surface of a single crystalline semiconductor carbide layer. The non-hexagonal symmetry surface of the single crystalline semiconductor carbide layer is annealed at an elevated temperature in ultra-high vacuum environment to form the graphene layer. During the anneal, the semiconductor atoms on the non-hexagonal surface of the single crystalline semiconductor carbide layer are evaporated selective to the carbon atoms. As the semiconductor atoms are selectively removed, the carbon concentration on the surface of the semiconductor-carbon alloy layer increases. Despite the non-hexagonal symmetry of the surface of the semiconductor-carbon alloy layer, the remaining carbon atoms can coalesce to form a graphene layer having hexagonal symmetry.
摘要:
A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
摘要:
This invention provides structures and a fabrication process for incorporating thin film transistors in back end of the line (BEOL) interconnect structures. The structures and fabrication processes described are compatible with processing requirements for the BEOL interconnect structures. The structures and fabrication processes utilize existing processing steps and materials already incorporated in interconnect wiring levels in order to reduce added cost associated with incorporating thin film transistors in the these levels. The structures enable vertical (3D) integration of multiple levels with improved manufacturability and reliability as compared to prior art methods of 3D integration.
摘要:
A MOSFET structure and method of fabricating the structure incorporates a multi-layer sidewall spacer to suppress parasitic overlap capacitance between the gate conductor and the source/drain extensions without degrading drive current and, thereby, effecting overall MOSFET performance. The multi-layer sidewall spacer is formed with a gap layer having a dielectric constant equal to one and a permeable low-K (e.g., less than 3.5) dielectric layer. Alternatively, the multi-layer sidewall spacer is formed with a first L-shaped dielectric layer having a permittivity value of less than approximately three and a second dielectric layer. The multi-layer spacer may also have a third nitride or oxide spacer layer. This third spacer layer provides increased structural integrity.
摘要:
The present invention is directed to a thin film transistor (and related multilayer structures) that includes: source and drain electrodes 14 and 15 disposed at a specified interval above an insulating substrate 11 and formed by printing-and-plating; an a-Si film 16 disposed for the source and drain electrodes 14 and 15; a gate insulating film 17 laminated on the a-Si film 16; and a gate electrode 18 laminated on the gate insulating film 17 and formed by printing-and-plating. The a-Si film 16 and the gate insulating film 17 have an offset region 20 that uniformly extends beyond the dimensions of the gate electrode 18.
摘要:
A sense circuit for detecting charge on a TFT/LCD cell capacitor, which comprises a first, integrating circuit attached to the TFT/LCD cell capacitor through a data line, wherein the data line is connected to the cell capacitance through a thin film transistor is disclosed. The thin film transistor including a gate, a drain and a source, wherein the source is connected to the cell capacitor and the drain is connected to the data line. A first, gate supply voltage adapted to drive the gate of the thin film transistor. And a reset circuit adapted to reset the integrating circuit. This embodiment may further include a source for charging said cell capacitor prior to measuring the charge. Further, a method of testing a partially constructed electronic circuit, for example the cell of an LCD, prior to installation of the backplate is also disclosed. The partial circuit comprising an array of contact electrodes, for example cell pad electrodes and an array of address electrodes, for example gate electrodes. The address electrodes being electrically connected to the contact electrodes. The method comprising the steps of providing the partial circuit with a test electrode, for example an adjacent data electrode extending alongside but spaced from at least a first contact electrode; and measuring the capacitance between the first contact electrode and the test electrode.