Abstract:
A system for performing non-invasive networked medical procedures including a number of in vivo medical devices, a communication path between at least two of the devices, an ex vivo control unit to control the behavior of the devices, and a wireless communication path between the control unit and at least one of the devices. An associated method for performing non-invasive networked medical procedures is also provided. Further included is a simulation method that utilizes accurate electromagnetic field simulations, using a software based test bench, to determine the maximum allowable transmitted power levels from in vivo devices to achieve a required bit error rates (BER) at an in vivo or ex vivo node (receiver) while maintaining the specific absorption rate (SAR) under a required threshold.
Abstract:
A system for performing non-invasive networked medical procedures including a number of in vivo medical devices, a communication path between at least two of the devices, an ex vivo control unit to control the behavior of the devices, and a wireless communication path between the control unit and at least one of the devices. An associated method for performing non-invasive networked medical procedures is also provided. Further included is a simulation method that utilizes accurate electromagnetic field simulations, using a software based test bench, to determine the maximum allowable transmitted power levels from in vivo devices to achieve a required bit error rates (BER) at an in vivo or ex vivo node (receiver) while maintaining the specific absorption rate (SAR) under a required threshold.
Abstract:
A system and method for optimizing usage of a communications transmission medium. The transmission medium may be sliced into time and frequency domains so as to create time-frequency slices for assignment to users having varying access rates and user-application requirements. Through scheduling of the various speed users within the frequency and time domains, the system and method can efficiently allocate and make use of the available spectrum, thereby accommodating higher rate users requiring greater bandwidths and time slot assignments while still preserving cost-efficient access for lower speed users. Depending on the signal modulation scheme, the time-frequency slices may be allocated on non-contiguous frequency bands. The system and method is also applicable to code-division multiple access (CDMA) techniques by slicing the available code space along time-code domains, frequency-code domains or, in three dimensions, along time-frequency-code domains. Users may be efficiently scheduled based on code space requirements so as to optimize use of the communication medium.
Abstract:
A multi-code code division multiple access system allows a user at a radio transmitter unit to dynamically change its source data bit rate. In response to a user input selecting one of the plurality of source bit rates, an adjustable coding circuit in the transmitter spreads and transmits the user's digital bit stream received at the selected bit rate to a channel bit rate which at least equals the highest bit rate of the plurality of source bit rates. The plurality of source bit rates includes a basic bit rate R and at least one bit rate which is a multiple M of the basic bit rate R, where M is an integer of at least 1. The user's input selects a particular user source bit rate by identifying a basic bit rate multiple M to a base station that is to receive the transmission.
Abstract:
Signal distortion in fiber optic systems is compensated for by forming decisions as to the transmitted information as a joint function of the received signal and of a feedback signal. The latter, in turn, is a function of decisions made for at least one signal transmitted over the fiber. The feedback signal determines the value of a threshold to which the received signal is compared in order to generate the decisions.
Abstract:
A congestion control method and apparatus for use with a communications link comprising a plurality of N channels. A plurality of at most N-1 queues are sequentially polled, and data is output therefrom to the communications link, thereby leaving at least one remaining channel. After the at most N-1 queues are polled, a determination is made as to which of the at most N-1 queues is closest to a data overflow condition. The remaining at least one channel is then utilized to transmit data from the queues which are closest to overflow.
Abstract:
This invention is a technique for the substantially instantaneous self-healing of digital communications networks. Digital data streams from each of N nearby sources are combined and encoded to produce N+M coded data streams using a coding algorithm. The N+M coded data streams are then each transmitted over a separate long haul communications link to a decoder where any N of the N+M coded data streams can be decoded uniquely to produce the original N data streams. The orginal N data streams are then distributed to their respective separate end destinations. If any M or less of the N+M long haul communications links fails, i.e. as in a telephone line that gets cut or a long distance switch that fails, no rerouting of traffic need be done. Rather, the receiver detects loss of carrier on the failed link(s), and immediately supplies the missing data by decoding the data from the at least N remaining links. The technique overcomes a long felt problem of trying to reroute traffic by using sophisticated resource allocation techniques when a communications link fails.
Abstract:
In a multipoint data communication system using quadrature-amplitude modulation, a master modem and a plurality of tributary modems are interconnected via respective transmission channels. Adaptive equalizer circuitry in the master modem equalizes the channel from a particular tributary by multiplying samples of signals received from the tributary by an ensemble of tap coefficients associated with the tributary. The tap coefficient ensembles for each tributary are stored in a memory from which they are retrieved at the start of transmission from that tributary. Timing acquisition circuitry within the master modem adjusts the phase of the latter's sampling circuitry at the start of transmission from a given tributary so that the received signals are sampled at the correct time points. In particular, a timing acquisition signal is transmitted by the tributary. The master samples and equalizes the received timing acquisition signal to form a succession of timing acquisition equalizer outputs. Each timing acquisition equalizer output is multiplied by its complex conjugate to form a timing acquisition envelope sample. The time by which the operation of the sampling circuitry is to be advanced or retarded is determined as a trigonometric function of successive timing acquisition envelope samples.
Abstract:
The present invention provides a Diversity Coding—Orthogonal Frequency Division Multiplexing (DC-OFDM) system and method that applies diversity coding to OFDM-based systems and provides improved probability of successful reception at the receiver and transparent self-healing and fault-tolerance. Diversity coding is well suited for OFDM-based systems because of its spatial diversity nature (parallel links). DC-OFDM provides the best performance when the probability of link error is high or when a link (sub-channel) fails. Also, by implementing diversity coding in OFDM-based systems, a reliable communication can be provided that is quite tolerant of link failures, since data and protection lines are transmitted via multiple sub-channels.
Abstract:
A forward error correction system adaptively changes the number of parity bits, bytes or packets transmitted to a receiver, based on previous error patterns experienced recently in the reception of original and parity bits, bytes or packets by that receiver.