Abstract:
Embodiments involve a food warmer that uses a nano thickness heating material as the heating element. The heating element has a fast response and is energy efficient. The temperature of the food warmer can be precisely controlled. The food warmer may be used to heat cold food to a desired temperature, maintain a temperature of already heated food, and/or cook uncooked food.
Abstract:
A medical warming system includes a plurality of heating elements respectively adapted to be disposed closed to various parts of a plurality of patients' bodies, a first group of sensors disposed at the proximity of the heating elements and configured for measuring the temperatures of the heating elements, a second group of sensors adapted to be disposed at the various parts of the patients' bodies and configured for measuring the temperatures of the various parts of the patients' bodies, and a controller being in communication with the first group and the second group of sensors. The controller is configured for receiving temperature data from the sensors and controlling the temperature of each heating element accordingly. Each heating element includes a conductive layer made from a nano-thickness material.
Abstract:
A Multicode (MC) Code Division Multiple Access (CDMA) receiver receives J encoded multicode channels (where J>1) over L multiple air signal paths (where L>1) and forms a decorrelator output vector in which for each of the J multicode channels, the interference caused by the other J−1 multicode channels has been cancelled. When the MC CDMA receiver is a coherent receiver, a pilot interference canceller cancels a received pilot signal from the J channel code of each of the received J multicode channels prior to forming the decorrelator output vector.
Abstract:
A code division multiple access system method and apparatus provides for allocation of increased bandwidth to a requesting mobile station. An access controller receives a data burst request (from either a requesting mobile station or from an external network already in connection with the mobile station) requesting a first data rate in excess of the basic data rate B allocated to a mobile station of a first cell. The access controller determines an increased data rate which is to be granted to said mobile station without causing excessive interference at said first cell and at least one adjacent cell and transmits a data burst assignment to a base station of said first cell indicating the increased data rate which has been granted to said mobile station. In another feature, the access controller processes a data burst request received from a mobile station involved in a soft handoff between multiple base stations and negotiates with those base stations for an increased data rate which may be granted to the requesting mobile station. One feature enables additional interactions to further refine the allocation process. A variety of system architectures are also described.
Abstract:
A Code-Division Multiple Access (CDMA) receiver removes the pilot signal from the received signal. The pilot signal is defined by its multipath parameters (amplitudes, phase shift and delays) and its signature sequence. Since this information is known at the user's receiver terminal (i.e., handset), the pilot signals of the interfering multipath components of the baseband received signal are detected and removed prior to demodulation of the desired multipath component. The pilot signal may be cancelled prior to or following the data accumulation stage. The pilot signal cancellation can be switched on and off depending on the detected path signal level.
Abstract:
A Multi-Code (MC) Code Division Multiple Access (CDMA) receiver receives N (where N.gtoreq.1) encoded signal channels over multiple air signal paths. The N signal channels are encoded using a properly chosen subset of Walsh codes based on a Walsh-Matrix, W.sup.M, where M is a power of two. In the disclosed MC-CDMA receiver, a timing correlator means recovers the timing and control signal for the N signal channels received over any particular signal path; a FWHT circuit together with a second correlator means decodes all of the N signal channels.
Abstract:
A code division multiple access system provides a way of allocating an increased data rate to a requesting mobile station. A mobile station requesting a data rate in excess of the basic data rate sends received pilot strength data for its base station and base stations in adjacent cells. The received pilot strength data is used to determine an increased data rate to be assigned to the requesting mobile station. One feature assigns an increased data rate when the received pilot strength data has a predetermined relationship to an established threshold. Another feature utilizes a series of threshold levels, each pair of levels associated with a different permitted data rate. Using the received pilot strength data, a data rate is determined which satisfies all adjacent cell interference concerns. Another feature uses average adjacent cell capacity loads rather than threshold levels, together with the received pilot strength data, to determine the appropriate increased data rate to be assigned to a user requesting an increased data rate.
Abstract:
A medical warming system includes a plurality of heating elements respectively adapted to be disposed closed to various parts of a plurality of patients' bodies, a first group of sensors disposed at the proximity of the heating elements and configured for measuring the temperatures of the heating elements, a second group of sensors adapted to be disposed at the various parts of the patients' bodies and configured for measuring the temperatures of the various parts of the patients' bodies, and a controller being in communication with the first group and the second group of sensors. The controller is configured for receiving temperature data from the sensors and controlling the temperature of each heating element accordingly. Each heating element includes a conductive layer made from a nano-thickness material.
Abstract:
Method and apparatus for channel simulation is disclosed. The claimed invention provides method and apparatus 1200 to simulate a propagation channel, particularly a multiple-input-multiple-input (MIMO) channel. The claimed invention further provides a method and apparatus for efficient optimization of antenna by the enhanced channel simulation. The claimed invention takes both antenna characteristics and channel characteristics as inputs, and output time-varying channel realizations to generate the system metrics as the optimization target for antenna under optimization. The claimed invention advantageous provides enhanced channel simulation to meet the accuracy requirement of antenna evaluation.
Abstract:
Method and apparatus for channel simulation is disclosed. The claimed invention provides method and apparatus 1200 to simulate a propagation channel, particularly a multiple-input-multiple-input (MIMO) channel. The claimed invention further provides a method and apparatus for efficient optimization of antenna by the enhanced channel simulation. The claimed invention takes both antenna characteristics and channel characteristics as inputs, and output time-varying channel realizations to generate the system metrics as the optimization target for antenna under optimization. The claimed invention advantageous provides enhanced channel simulation to meet the accuracy requirement of antenna evaluation.