Abstract:
A method of time domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) communication, including the steps of: preparing OFDM-body; generating pseudo random (PN) sequence as a training signal; manipulating the PN sequence to concentrate the energy distribution thereof to the same bandwidth of sub-carriers of the OFDM-body; offsetting the manipulated PN sequence to align with frequency spectrum of the sub-carriers; and inserting the offset PN sequence as prefix of a TDS-OFDM data frame. The manipulating step may include the step of repeating the PN sequence by N times, wherein the spectrum of the repeated PN sequence concentrates on discrete bundles of sub-carriers, i.e., on one sub-carrier every N sub-carriers or M adjacent sub-carriers every MN sub-carriers, where M is an integer determined by the time duration ratio of the OFDM body and prefix. Alternatively, the manipulating step may include the step of expanding the PN sequence by N times, wherein the spectrum of the expanded PN sequence concentrates on a block of continual adjacent sub-carriers, the bandwidth of the PN sequence is 1/N of the whole bandwidth.
Abstract:
Method and apparatus for channel simulation is disclosed. The claimed invention provides method and apparatus 1200 to simulate a propagation channel, particularly a multiple-input-multiple-input (MIMO) channel. The claimed invention further provides a method and apparatus for efficient optimization of antenna by the enhanced channel simulation. The claimed invention takes both antenna characteristics and channel characteristics as inputs, and output time-varying channel realizations to generate the system metrics as the optimization target for antenna under optimization. The claimed invention advantageous provides enhanced channel simulation to meet the accuracy requirement of antenna evaluation.
Abstract:
Method and apparatus for channel simulation is disclosed. The claimed invention provides method and apparatus 1200 to simulate a propagation channel, particularly a multiple-input-multiple-input (MIMO) channel. The claimed invention further provides a method and apparatus for efficient optimization of antenna by the enhanced channel simulation. The claimed invention takes both antenna characteristics and channel characteristics as inputs, and output time-varying channel realizations to generate the system metrics as the optimization target for antenna under optimization. The claimed invention advantageous provides enhanced channel simulation to meet the accuracy requirement of antenna evaluation.
Abstract:
A method of time domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) communication, including the steps of: preparing OFDM-body 402; generating pseudo random (PN) sequence 403 as a training signal; manipulating the PN sequence 403 to concentrate the energy distribution thereof to the same bandwidth of sub-carriers of the OFDM-body; offsetting the manipulated PN sequence to align with frequency spectrum of the sub-carriers 406; and inserting the offset PN sequence as prefix 401 of a TDS-OFDM data frame 400. The manipulating step may include the step of repeating the PN sequence by N times, wherein the spectrum of the repeated PN sequence concentrates on discrete bundles of sub-carriers, i.e., on one sub-carrier every N sub-carriers or M adjacent sub-carriers every MN sub-carriers, where M is an integer determined by the time duration ratio of the OFDM body and prefix.. Alternatively, the manipulating step may include the step of expanding the PN sequence by N times, wherein the spectrum of the expanded PN sequence concentrates on a block of continual adjacent sub-carriers, the bandwidth of the PN sequence is 1/N of the whole bandwidth.