Abstract:
The present invention provides a Diversity Coding—Orthogonal Frequency Division Multiplexing (DC-OFDM) system and method that applies diversity coding to OFDM-based systems and provides improved probability of successful reception at the receiver and transparent self-healing and fault-tolerance. Diversity coding is well suited for OFDM-based systems because of its spatial diversity nature (parallel links). DC-OFDM provides the best performance when the probability of link error is high or when a link (sub-channel) fails. Also, by implementing diversity coding in OFDM-based systems, a reliable communication can be provided that is quite tolerant of link failures, since data and protection lines are transmitted via multiple sub-channels.
Abstract:
A system for performing non-invasive networked medical procedures including a number of in vivo medical devices, a communication path between at least two of the devices, an ex vivo control unit to control the behavior of the devices, and a wireless communication path between the control unit and at least one of the devices. An associated method for performing non-invasive networked medical procedures is also provided. Further included is a simulation method that utilizes accurate electromagnetic field simulations, using a software based test bench, to determine the maximum allowable transmitted power levels from in vivo devices to achieve a required bit error rates (BER) at an in vivo or ex vivo node (receiver) while maintaining the specific absorption rate (SAR) under a required threshold.
Abstract:
A system for performing non-invasive networked medical procedures including a number of in vivo medical devices, a communication path between at least two of the devices, an ex vivo control unit to control the behavior of the devices, and a wireless communication path between the control unit and at least one of the devices. An associated method for performing non-invasive networked medical procedures is also provided. Further included is a simulation method that utilizes accurate electromagnetic field simulations, using a software based test bench, to determine the maximum allowable transmitted power levels from in vivo devices to achieve a required bit error rates (BER) at an in vivo or ex vivo node (receiver) while maintaining the specific absorption rate (SAR) under a required threshold.
Abstract:
A system for performing non-invasive networked medical procedures including a number of in vivo medical devices, a communication path between at least two of the devices, an ex vivo control unit to control the behavior of the devices, and a wireless communication path between the control unit and at least one of the devices. An associated method for performing non-invasive networked medical procedures is also provided. Further included is a simulation method that utilizes accurate electromagnetic field simulations, using a software based test bench, to determine the maximum allowable transmitted power levels from in vivo devices to achieve a required bit error rates (BER) at an in vivo or ex vivo node (receiver) while maintaining the specific absorption rate (SAR) under a required threshold.
Abstract:
A system for performing non-invasive networked medical procedures including a number of in vivo medical devices, a communication path between at least two of the devices, an ex vivo control unit to control the behavior of the devices, and a wireless communication path between the control unit and at least one of the devices. An associated method for performing non-invasive networked medical procedures is also provided. Further included is a simulation method that utilizes accurate electromagnetic field simulations, using a software based test bench, to determine the maximum allowable transmitted power levels from in vivo devices to achieve a required bit error rates (BER) at an in vivo or ex vivo node (receiver) while maintaining the specific absorption rate (SAR) under a required threshold.
Abstract:
A system for performing non-invasive networked medical procedures including a number of in vivo medical devices, a communication path between at least two of the devices, an ex vivo control unit to control the behavior of the devices, and a wireless communication path between the control unit and at least one of the devices. An associated method for performing non-invasive networked medical procedures is also provided. Further included is a simulation method that utilizes accurate electromagnetic field simulations, using a software based test bench, to determine the maximum allowable transmitted power levels from in vivo devices to achieve a required bit error rates (BER) at an in vivo or ex vivo node (receiver) while maintaining the specific absorption rate (SAR) under a required threshold.