Abstract:
A multi-code code division multiple access system allows a user at a radio transmitter unit to dynamically change its source data bit rate. In response to a user input selecting one of the plurality of source bit rates, an adjustable coding circuit in the transmitter spreads and transmits the user's digital bit stream received at the selected bit rate to a channel bit rate which at least equals the highest bit rate of the plurality of source bit rates. The plurality of source bit rates includes a basic bit rate R and at least one bit rate which is a multiple M of the basic bit rate R, where M is an integer of at least 1. The user's input selects a particular user source bit rate by identifying a basic bit rate multiple M to a base station that is to receive the transmission.
Abstract:
This invention is a technique for the substantially instantaneous self-healing of digital communications networks. Digital data streams from each of N nearby sources are combined and encoded to produce N+M coded data streams using a coding algorithm. The N+M coded data streams are then each transmitted over a separate long haul communications link to a decoder where any N of the N+M coded data streams can be decoded uniquely to produce the original N data streams. The orginal N data streams are then distributed to their respective separate end destinations. If any M or less of the N+M long haul communications links fails, i.e. as in a telephone line that gets cut or a long distance switch that fails, no rerouting of traffic need be done. Rather, the receiver detects loss of carrier on the failed link(s), and immediately supplies the missing data by decoding the data from the at least N remaining links. The technique overcomes a long felt problem of trying to reroute traffic by using sophisticated resource allocation techniques when a communications link fails.
Abstract:
A method and apparatus providing communications between mobile units and other communications devices, is disclosed wherein, in response to a request to call a mobile unit from an originating communications device, a paging signal is sent via a global communications network and received by a mobile unit. The paging signal contains caller and callee identification codes, which are decoded by the mobile unit. A paging response signal, in the form of a reverse call setup signal, is then transmitted from the mobile unit to the originating communications device. Transmission of the paging signal is preferably stopped when a correspondence condition exists such that the caller and callee identification codes of the paging signal correspond to the caller and caller identification codes of the paging response signal.
Abstract:
Ghosts are canceled in received analog TV (for IDTV, EDTV, and HDTV) signals by utilizing the fact that there are short periods of time without the analog signals (the horizontal flyback interval between the lines) to process the received signal on a line-to-line basis using a finite impulse response (FIR) or an infinite impulse response (IIR) equalizer. This line-by-line processing (which can be implemented by periodic cleansing of the equalizer) overcomes the limitations of standard equalizers to allow for 40-50 dB of suppression of ghosts, even with nulls in the spectrum, as long as the ghost delay is less than the period of time without the analog signal. Furthermore, by using time inversion in combination with line-by-line processing, the stability problem of the conventional IIR equalizer is eliminated. The IIR equalizer may be implemented on a single digital integrated circuit. Alternatively, an FIR equalizer can be used which, although it may require multiple chips (i.e., more taps), can acquire and adapt to the ghosted channel more rapidly than an IIR equalizer. With line-by-line processing, FIR and IIR equalizers can eliminate any ghost with delays up to 11 .mu.sec in IDTV or EDTV. For larger delays, a standard IIR or FIR equalizer can be used as a preprocessor to eliminate small ghosts and an adaptive antenna can be used to eliminate large ghosts. Thus, with these techniques, the ghosting problem can be eliminated in all TV receivers.
Abstract:
The present invention provides a Diversity Coding—Orthogonal Frequency Division Multiplexing (DC-OFDM) system and method that applies diversity coding to OFDM-based systems and provides improved probability of successful reception at the receiver and transparent self-healing and fault-tolerance. Diversity coding is well suited for OFDM-based systems because of its spatial diversity nature (parallel links). DC-OFDM provides the best performance when the probability of link error is high or when a link (sub-channel) fails. Also, by implementing diversity coding in OFDM-based systems, a reliable communication can be provided that is quite tolerant of link failures, since data and protection lines are transmitted via multiple sub-channels.
Abstract:
A forward error correction system adaptively changes the number of parity bits, bytes or packets transmitted to a receiver, based on previous error patterns experienced recently in the reception of original and parity bits, bytes or packets by that receiver.
Abstract:
A wireless communications system is arranged to provide data communications services, including error recovery, between at least one wireless end-user device and at least one one base station. The wireless end user device(s) receives(s) from the base station(s) unsolicited messages indicative of the status of data packets received by the base station(s). The wireless end-user device(s) transmit acknowledgement and request for retransmission messages only upon request, or when all the packets within a block of such packets have been received.
Abstract:
Currently, with optical time division multiplexing, a switching node is operated at the peak transmission rate. For example, if the data transmission rate is 10 Gbps, the line cards in the switching circuit are also required to operate at this rate despite the fact that the switching node does not actually need to access the data at this rate. Thus, the electronics, which includes the line cards at the switching node, is expensive and less reliable than a low-speed design. In this invention the requirement of operating the switching node electronics at the high speed link bit rate is eliminated by encoding the packet header field at a lower rate than the information in the data field. As a result, the line cards need only operate at the lower header rate. This is possible because the switching node does not need to process the data portion of the packet, but only the header information. The high-speed data portion of the packet is not optically to electrically converted at the switching node, but it passes almost transparently through the switching node. The invention also discloses overlapping several logical networks on the same physical network.
Abstract:
The advantages of both a color display and a high-resolution monochrome display are realized in a single display system by eliminating color filters from the display screen of the display system and illuminating the display screen with either colored light or white light to provide color or high-resolution monochrome capability, respectively. Simultaneous color and high-resolution monochrome capability is realized by illuminating predetermined portions of the display screen with only colored light while illuminating different portions of the display screen with only white light.
Abstract:
In a system for communicating primary and secondary data from a transmitter to a receiver, each of a first plurality of primary data word values is communicated by transmitting an individual channel symbol associated with that value, while at least one other primary data word value is communicated by transmitting a selected one of at least two other channel symbols associated with that one other value. The selected symbol is a function of the value of an individual secondary data word. In the receiver, both the primary and secondary data word values are recovered from the channel symbols thus transmitted.