Abstract:
TDMA communications between a host device and a number of clients on a communications channel are dynamically adapted to allocate or de-allocate time slots in response to changes in the number of active clients. The system initially operates in a startup mode in which the host device transmits a startup message on the communications channel and assigns a timeslot in a TDMA cycle in response to connection requests received from each of the requesting clients. After exiting the startup mode, the system operates in a normal mode in which the host device initiates the TDMA cycle by transmitting a polling message on the communications channel that indicates a number of timeslots occurring within that particular TDMA cycle. The host changes the number of timeslots indicated in the polling message to responsively adapt duration of the TDMA cycle as the number of clients communicating via the communications channel changes.
Abstract:
Methods and apparatus for performing multiplexing of video or other content (e.g., programs) within a network using feed-back from a subsequent digital program insertion stage, and/or feed-forward information from a prior multiplexing stage. In one embodiment, the network comprises a hybrid fiber coax (HFC) cable network having headend and hub-based statistical multiplexing stages, and communication between the two stages is used to improve the visual quality performance and bandwidth utilization of the output multi-program stream during conditions where downstream content is inserted into the transport stream. Business methods associated with the various multiplexing features described above are also disclosed.
Abstract:
A system and method for providing communications between a hub (medical controller) and a node (an implant) are disclosed. The hub selects an operating channel within a channel group in accordance with applicable regulations, and transmits signals to facilitate communications with nodes. A node sequentially tunes to individual channels within the group, monitoring each channel for a hub transmission during a monitoring period. If a hub transmission is detected, the node stays on the current channel. Otherwise, the node tunes to a next channel in the channel group. The hub transmission may be directed to unconnected nodes, to a single connected node, or to a group of connected nodes. The node transmits a first frame to the hub at a designated transmission time and receives a response. The node reports an emergency by sequentially transmitting emergency frames on each of the channels until receiving an acknowledgment from the hub.
Abstract:
A multiplexing communication system is capable of maintaining an appropriate response speed of a control with respect to an electromagnetic motor based on an encoder signal during multiplexing and transmission of the encoder signal. A transmission data composition processing section of a multiplex communication device multiplexes encoder signals ENCD1 to ENCD8 output from a linear scale and a rotary encoder into frame data FRMD and transmits the data. The transmission data composition processing section sets the encoder signals ENCD1 to ENCD8 to bit positions of the frame data FRMD respectively corresponding to the linear scale and the rotary encoder. At the bit positions where the encoder signals ENCD1 to ENCD8 are set, the encoder signal ENCD and information showing the presence or absence of the data of the encoder signal ENCD are alternately set for each cycle of transmission of the frame data FRMD.
Abstract:
A network design method that determines a TDM transmission line for accommodating a given demand includes: extracting an available demand from among a plurality of provided demands; calculating a total bandwidth of the extracted available demand; sequentially selecting the plurality of demands; generating candidates for a combination of TDM transmission lines that accommodate the selected demand; and determining a combination of TDM transmission lines that accommodates the selected demand from among the candidates for the combination of TDM transmission lines. The generating process includes: extracting a TDM transmission line with a band utilization efficiency higher than a specified threshold from among TDM transmission lines including the selected demand as an available demand; and generating candidates for a combination of TDM transmission lines that accommodate the selected demand using the extracted TDM transmission line.
Abstract:
A system and method for providing communications between a hub (medical controller) and a node (an implant) are disclosed. The hub selects an operating channel within a channel group in accordance with applicable regulations, and transmits signals to facilitate communications with nodes. A node sequentially tunes to individual channels within the group, monitoring each channel for a hub transmission during a monitoring period. If a hub transmission is detected, the node stays on the current channel. Otherwise, the node tunes to a next channel in the channel group. The hub transmission may be directed to unconnected nodes, to a single connected node, or to a group of connected nodes. The node transmits a first frame to the hub at a designated transmission time and receives a response. The node reports an emergency by sequentially transmitting emergency frames on each of the channels until receiving an acknowledgment from the hub.
Abstract:
A data path for streaming data includes a plurality of sequential data registers, each of the plurality of sequential data registers comprising a plurality of data fields, wherein the streaming data moves sequentially through the sequential data registers; and a multiplexing unit, the multiplexing unit configured such that the multiplexing unit has access to each of the plurality of data fields of the plurality of sequential data registers, and wherein the multiplexing unit is configured to extract data from the streaming data as the streaming data moves through the sequential data registers in response to a data request.
Abstract:
One exemplary embodiment is directed to a method for deep space communication. The method comprises generating a first packet, assigning a first priority level to the first packet, and selecting at least one communication link from a plurality of communication links for transmission of the first packet. Selecting is a function of a rule specifying which one or more communication links a packet of the first priority level is to be transmitted over. The method also includes transmitting the first packet over the at least one communication link.
Abstract:
A means for reliable inter-processor communication in a multi-processor system is described. In accordance with one aspect, a specially-configured serial bus is used as a general-purpose data link between a first processor and a second processor. The serial bus may be an Inter-IC Sound (I2S) bus. In accordance with another aspect, a network interface residing on a second processor is made available to a first processor via a data link established over an I2S bus. This allows the second processor to be used as a proxy and to support remote configuration and network address traversal.
Abstract:
A scheduled transmission may be divided up into several segments so that a transmitting node may receive and transmit control messages between segments. In some implementations a monitoring period is defined after a scheduled transmission period to enable the transmitting node to acquire control information that may otherwise have been transmitted during the scheduled transmission period. In some implementations a wireless media access control supports asynchronous communication and overlapping transmissions. Here, a wireless node may determine whether to request or schedule a transmission based on control messages it receives from neighboring nodes. In some implementations data and control information are transmitted over different frequency division multiplexed channels to enable concurrent transmission of the data and control information.