Abstract:
Systems, methods, and apparatuses relating to microarchitectural mechanisms for the prevention of side-channel attacks are disclosed herein. In one embodiment, a processor includes a core having a plurality of physical contexts to execute a plurality of threads, a plurality of structures shared by the plurality of threads, a context mapping structure to map context signatures to respective physical contexts of the plurality of physical contexts, each physical context to identify and differentiate state of the plurality of structures, and a context manager circuit to, when one or more of a plurality of fields that comprise a context signature is changed, search the context mapping structure for a match to another context signature, and when the match is found, a physical context associated with the match is set as an active physical context for the core.
Abstract:
A method is described that includes detecting that an instruction of a thread is a locked instruction. The instruction also includes determining that execution of said instruction includes imposing a bus lock. The instruction also include executing a bus lock assistance function in response to said determining, said bus lock assistance function including a function associated with said bus lock other than implementation of a bus lock protocol.
Abstract:
An apparatus and method is described herein for providing robust speculative code section abort control mechanisms. Hardware is able to track speculative code region abort events, conditions, and/or scenarios, such as an explicit abort instruction, a data conflict, a speculative timer expiration, a disallowed instruction attribute or type, etc. And hardware, firmware, software, or a combination thereof makes an abort determination based on the tracked abort events. As an example, hardware may make an initial abort determination based on one or more predefined events or choose to pass the event information up to a firmware or software handler to make such an abort determination. Upon determining an abort of a speculative code region is to be performed, hardware, firmware, software, or a combination thereof performs the abort, which may include following a fallback path specified by hardware or software. And to enable testing of such a fallback path, in one implementation, hardware provides software a mechanism to always abort speculative code regions.
Abstract:
An apparatus and method is described herein for providing robust speculative code section abort control mechanisms. Hardware is able to track speculative code region abort events, conditions, and/or scenarios, such as an explicit abort instruction, a data conflict, a speculative timer expiration, a disallowed instruction attribute or type, etc. And hardware, firmware, software, or a combination thereof makes an abort determination based on the tracked abort events. As an example, hardware may make an initial abort determination based on one or more predefined events or choose to pass the event information up to a firmware or software handler to make such an abort determination. Upon determining an abort of a speculative code region is to be performed, hardware, firmware, software, or a combination thereof performs the abort, which may include following a fallback path specified by hardware or software. And to enable testing of such a fallback path, in one implementation, hardware provides software a mechanism to always abort speculative code regions.
Abstract:
An apparatus and method is described herein for providing robust speculative code section abort control mechanisms. Hardware is able to track speculative code region abort events, conditions, and/or scenarios, such as an explicit abort instruction, a data conflict, a speculative timer expiration, a disallowed instruction attribute or type, etc. And hardware, firmware, software, or a combination thereof makes an abort determination based on the tracked abort events. As an example, hardware may make an initial abort determination based on one or more predefined events or choose to pass the event information up to a firmware or software handler to make such an abort determination. Upon determining an abort of a speculative code region is to be performed, hardware, firmware, software, or a combination thereof performs the abort, which may include following a fallback path specified by hardware or software. And to enable testing of such a fallback path, in one implementation, hardware provides software a mechanism to always abort speculative code regions.
Abstract:
In one embodiment the apparatus is a micro-page table engine that includes logic that is capable of receiving a memory page request for a page in global memory address space. The apparatus also includes a translation lookaside buffer (TLB) that is capable of storing one or more memory page address translations. Additionally, the apparatus also has a page miss handler capable of performing a micro physical address lookup in a page miss handler tag table in response to the TLB not storing the memory page address translation for the page of memory referenced by the memory page request. The apparatus also includes memory management logic that is capable of managing the page miss handler tag table entries.
Abstract:
A processor includes a processing unit including a storage module having stored thereon a table for tracking physical registers in which each store operation stores source data and a memory renaming module for register renaming load operations based on the table.
Abstract:
In an embodiment, a page miss handler includes paging caches and a first walker to receive a first linear address portion and to obtain a corresponding portion of a physical address from a paging structure, a second walker to operate concurrently with the first walker, and a logic to prevent the first walker from storing the obtained physical address portion in a paging cache responsive to the first linear address portion matching a corresponding linear address portion of a concurrent paging structure access by the second walker. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a method for identifying a termination sequence for an atomic memory operation executed by a first thread, associating a timer with the first thread, and preventing the first thread from execution of a memory cluster operation after completion of the atomic memory operation until a prevention window has passed. This method may be executed by regulation logic associated with a memory execution unit of a processor, in some embodiments. Other embodiments are described and claimed.
Abstract:
Methods and apparatus to provide for power consumption reduction in memories (such as cache memories) are described. In one embodiment, a virtual tag is used to determine whether to access a cache way. The virtual tag access and comparison may be performed earlier in the read pipeline than the actual tag access or comparison. In another embodiment, a speculative way hit may be used based on pre-ECC partial tag match to wake up a subset of data arrays. Other embodiments are also described.