Abstract:
An apparatus for releasably clamping a substrate to a support platform, or other support system, at a face of the substrate is described. In one embodiment, a retractable clamp holds a substrate near its edges on a support platform when the clamp is in its fully extended position. One or more leaf springs are mounted to the clamp and apply force to the substrate at respective points in the event the substrate adheres to the clamp, thereby releasing the substrate from the clamp. In a preferred embodiment of the present invention, one or more activators are positioned in cooperative relationship to the leaf springs to cause the leaf springs to retract into recesses in the clamp when the clamp is extended against the substrate. In their retracted position, the leaf springs do not contact the substrate so as to minimize the generation of particle contamination and the chance of the release leaf springs themselves adhering to the substrate.
Abstract:
This invention relates to a polyether-amido-amine compound, obtainable by a two-step reaction of a poly-etheramine with an alkyl acrylate and a polyalkyle-neimine, whereas the polyetheramine and the polyalkyleneimine have at least one primary or secondary amine group, in which the first step comprises the reaction of the polyetheramine with the alkyl acrylate and the second step comprises the reaction of the polyalkyleneimine with the product of the first step. The invention also relates to a method for synthesizing a polyether-amido-amine compound by a two-step-reaction. Another object of this invention is a curable composition containing at least one polyether-amido-amine-compound of this invention and a method for coating the surface of a substrate or for binding at least two substrates together using such a curable composition.
Abstract:
Semiconductor wafers having patterns of steps and grooves defining microcircuit elements thereon are coated with metallic film by supporting the wafers individually adjacent a respective ring-shaped sputtering source in stationary relationship thereto. To effectuate such individual wafer processing on a continuous basis and preserve the evacuated argon environment, a vacuum chamber sputter coating apparatus is provided which has a number of work stations therein, at least one of which includes said ring-shaped sputtering source. Also included is a load lock; and an intermittently rotating vertical plate-like wafer carrier means therewithin positioned closely adjacent the chamber entrance, and carrying wafers in turn from the load lock to the work stations. The carrier includes apertures each accepting a wafer therewithin in an upright position, with the wafers edgewise resiliently supported by clip means, without the use of any externally-originating supports such as platens. Both surfaces of the wafer can be accessed by processing equipment, for example, heating or cooling means at some of the work stations. Only a few wafers inside the chamber are at risk at any one time, and introduction of contaminants, debris, as well as disturbances to the chamber environment are minimized.
Abstract:
A magnetron sputter device includes separate first and second targets over which first and second discharges are formed by separate ionizing electric fields and separate confining magnetic fields. The separate confining magnetic fields include first and second magnetic circuits through the first and second targets, respectively. The first magnetic circuit includes first and second pole pieces for coupling magnetic flux from a first magnetic field source to the first target. The second magnetic circuit includes the second pole piece and a third pole piece for coupling magnetic flux from a second magnetic field source to the second target. The magnetic circuits and the magnetic field sources are arranged so that magnetic fluxes from the first and second magnetic field sources combine in the second pole piece.
Abstract:
Semiconductor wafers having patterns of steps and grooves defining microcircuit elements thereon are coated with metallic film by supporting the wafers individually adjacent a respective ring-shaped sputtering source in stationary relationship thereto. Within a short deposition time of approximately one minute, good uniformity of deposition across the main wafer plane is obtained by maintaining source-to-wafer spacing less than the diameter of the source, and an effective source diameter (D.sub.s) larger than the diameter of wafer (D.sub.w) with the coating being performed within an argon environment of 2 to 20 microns pressure. Good step coverage across all surfaces of steps and grooves is likewise obtained, and is further enhanced by confining the source-to-wafer spacing ranges to certain values within about 0.4 D.sub.s to 0.9 D.sub.s and the wafer diameter to certain values up to about 0.7 D.sub.s. To effectuate such individual wafer processing on a continuous basis and preserve the evacuated argon environment, a vacuum chamber sputter coating apparatus is provided which has a number of work stations therein, at least one of which includes said ring-shaped sputtering source. Also included is a load lock; and an intermittently rotating vertical plate-like wafer carrier means therewithin positioned closely adjacent the chamber entrance, and carrying wafers in turn from the load lock to the work stations. The carrier includes apertures each accepting a wafer therewithin in an upright position, with the wafers edgewise resiliently supported by clip means, without the use of any externally-originating supports such as platens. A closure member within the chamber is movable against the plate opposite the chamber entrance to close off the plate aperture from the chamber environment during loading and unloading of a wafer, and a door is provided to close the chamber opening and thus complete a thin low-volume load lock. The door is also provided with vacuum means to grasp a wafer presented vertically by a blade-like elevator which cooperates with a cassette and conveyor moving the cassette along a horizontal path below the chamber entrance. The cassette holds wafers vertically, and the blade passes therethrough to lift individual wafers edgewise to the door vacuum means. Closure of the door inserts the wafer into the clip means within the carrier and chamber, and the reverse operation extracts a wafer previously coated at a sputtering work station. Both surfaces of the wafer can be accessed by processing equipment, for example, heating or cooling means at some of the work stations. Only a few wafers inside the chamber are at risk at any one time, and introduction of contaminants, debris, as well as disturbances to the chamber environment are minimized.
Abstract:
A modular wafer processing system requires a gate valve of minimum thickness. A gate valve is provided in which the gate is an assymetric wedge on an assymetrically mounted drive shaft.
Abstract:
An elevator structure is actuated to remove wafers individually out of a storage cassette to an elevated delivery position. The elevator is a lift blade with an arcuate upper end shaped to match the curvature of the wafers, and a groove within this end adapted to match the thickness of a wafer and retain a wafer edgewise. A wafer-holding chuck on a chuck assembly is adapted to receive a wafer from the elevator when the elevator is in the elevated delivery position. The chuck assembly is movable from the delivery position to a remote position where the chuck presents the wafer to a support member. The support member is provided with an aperture and a plurality of deformable wafer-holding clips spaced around the aperture. The chuck assembly includes a pneumatic cylinder capable of contacting a portion of each clip to urge same to an open position. The invention includes an arrangement in which the chuck is mounted on a chuck assembly in the form of a door for sealing an opening in a process chamber.
Abstract:
A system for the automated handling and transfer of wafers individually and repetitively to and between processing stations and cassettes. A track-like conveyor engages a cassette holding a plurality of wafers in vertically facing alignment, to move same horizontally past a loading station of a processing chamber. A vertically moveable blade passes between the conveyor tracks and through the cassette to engage a wafer edgewise from below and move same upwardly to the processing chamber entrance. Vacuum means mounted to the door of the chamber entrance engages and holds the wafer during insertion into the chamber by closure of the door. Clip means are mounted within the periphery of an aperture of a vertical support plate just within the chamber entrance, to engage edgewise the wafer and support it within the plate aperture while in the processing chamber. The wafer is removed after processing by operating the foregoing apparatus in reverse order. The processing chamber may be a vacuum chamber, and minimal-volume load lock means therefor are advantageously provided by the system with the aid of a sealing member within the chamber compressible against the wafer support plate and chamber wall while the chamber door is open, to seal off the entrance area from the remainder of the chamber. The wafer support plate is moveable within the processing chamber to various wafer processing stations once the door is closed and the sealing member withdrawn.
Abstract:
A roofing repair system including a multi-part primer and a water-activated overcoat composition. The multi-part primer includes a first part including a hydroxyl-functional (meth)acrylic (co)polymer, and a second part including a mixture of a hydrophilic polyfunctional aliphatic polyisocyanate and a hydrophobic polyfunctional aliphatic polyisocyanate, wherein a molar ratio of hydroxyl functionality in the first part to isocyanate functionality in the second part is less than 1. The water-activated overcoat composition includes at least one compound selected from polyketimines having amino groups attached to secondary carbon atoms, polyenamines, and oxazolidines. In some exemplary embodiments, the volume ratio of the multi-part primer to the water-activated composition is from 5:1 to 7:1. In certain exemplary embodiments, the multi-part primer is substantially free of organic solvents. A method of using the roofing repair system to repair the weathered surface of an elastomeric roofing membrane is also described.
Abstract:
An apparatus for releasably clamping a substrate to a support platform, or other support means, at a face of the substrate is described. In one embodiment, a retractable clamp holds a substrate near its edges on a support platform when the clamp is in its fully extended position. One or more leaf springs are mounted to the clamp and apply force to the substrate at respective points in the event the substrate adheres to the clamp, thereby releasing the substrate from the clamp. In a preferred embodiment of the present invention, one or more activators are positioned in cooperative relationship to the leaf springs to cause the leaf springs to retract into recesses in the clamp when the clamp is extended against the substrate. In their retracted position, the leaf springs do not contact the substrate so as to minimize the generation of particle contamination and the chance of the release leaf springs themselves adhering to the substrate.