Abstract:
According to one embodiment, a memory device includes a semiconductor substrate, first, second, third and fourth fin-type stacked layer structures, each having memory strings stacked in a first direction perpendicular to a surface of the semiconductor substrate, and each extending to a second direction parallel to the surface of the semiconductor substrate, a first part connected to first ends in the second direction of the first and second fin-type stacked layer structures each other, a second part connected to first ends in the second direction of the third and fourth fin-type stacked layer structures each other, a third part connected to second ends in the second direction of the first and third fin-type stacked layer structures each other, and a fourth part connected to second ends in the second direction of the second and fourth fin-type stacked layer structures each other.
Abstract:
In a semiconductor layer, information is written by applying a first potential to a first electrode, applying a second potential that is lower than the first potential to all of back gate electrodes, applying a third potential that is higher than the first potential to the first to (i−1)th front gate electrodes, and applying a fourth potential that is between the second and third potentials to the ith and subsequent front gate electrodes, where “i” is a positive integer and identifies a specific location to which information is to be written.
Abstract:
According to one embodiment, a memory device includes first and second fin type stacked structures each includes first to i-th memory strings (i is a natural number except 1) that are stacked in a first direction, the first and second fin type stacked structures which extend in a second direction and which are adjacent in a third direction, a first portion connected to one end in the second direction of the first fin type stacked structure, a width in the third direction of the first portion being greater than a width in the third direction of the first fin type stacked structure, and a second portion connected to one end in the second direction of the second fin type stacked structure, a width in the third direction of the second portion being greater than a width in the third direction of the second fin type stacked structure.
Abstract:
A semiconductor device includes: a semiconductor substrate; a source region and a drain region formed at a distance from each other in the semiconductor substrate; a first insulating film formed on a portion of the semiconductor substrate, the portion being located between the source region and the drain region; a charge storage film formed on the first insulating film; a second insulating film formed above the charge storage film and made of a high-permittivity material; a control gate electrode formed above the second insulating film; and a silicon nitride layer including nitrogen atoms having three-coordinate nitrogen bonds, at least one of second-nearest neighbor atoms of the nitrogen atoms being a nitrogen atom. At least one of the charge storage film and the control gate electrode contains silicon, the silicon nitride layer is located between the second insulating film and the at least one of the charge storage film and the control gate electrode.
Abstract:
A nonvolatile programmable switch according to an embodiment includes: a first nonvolatile memory transistor including a first to third terminals connected to a first to third interconnects respectively; a second nonvolatile memory transistor including a fourth terminal connected to a fourth interconnect, a fifth terminal connected to the second interconnect, and a sixth terminal connected to the third interconnect, the first and second nonvolatile memory transistors having the same conductivity type; and a pass transistor having a gate electrode connected to the second interconnect. When the first and fourth interconnects are connected to a first power supply while the third interconnect is connected to a second power supply having a higher voltage than that of the first power supply, a threshold voltage of the first nonvolatile memory transistor increases, and a threshold voltage of the second nonvolatile memory transistor decreases.
Abstract:
According to one embodiment, a nonvolatile semiconductor memory device includes a fin-type stacked layer structure having memory cells, and a beam connected to an end portion of the structure. Each of the structure and the beam includes semiconductor layers stacked in a perpendicular direction. The beam includes a contact portion provided at one end of the beam, and a low resistance portion provided between the contact portion and the end portion of the structure.
Abstract:
In a semiconductor layer, information is written by applying a first potential to a first electrode, applying a second potential that is lower than the first potential to all of back gate electrodes, applying a third potential that is higher than the first potential to the first to (i−1)th front gate electrodes, and applying a fourth potential that is between the second and third potentials to the ith and subsequent front gate electrodes, where “i” is a positive integer and identifies a specific location to which information is to be written.
Abstract:
A nonvolatile programmable switch according to an embodiment includes: a first nonvolatile memory transistor including a first to third terminals connected to a first to third interconnects respectively; a second nonvolatile memory transistor including a fourth terminal connected to a fourth interconnect, a fifth terminal connected to the second interconnect, and a sixth terminal connected to the third interconnect, the first and second nonvolatile memory transistors having the same conductivity type; and a pass transistor having a gate electrode connected to the second interconnect. When the first and fourth interconnects are connected to a first power supply while the third interconnect is connected to a second power supply having a higher voltage than that of the first power supply, a threshold voltage of the first nonvolatile memory transistor increases, and a threshold voltage of the second nonvolatile memory transistor decreases.
Abstract:
According to one embodiment, a nonvolatile semiconductor memory device includes a fin-type stacked layer structure in which a first insulating layer, a first semiconductor layer, . . . an n-th insulating layer, an n-th semiconductor layer, and an (n+1)-th insulating layer (n is a natural number equal to or more than 2) are stacked in order thereof in a first direction perpendicular to a surface of a semiconductor substrate and which extends in a second direction parallel to the surface of the semiconductor substrate, first to n-th memory strings which use the first to n-th semiconductor layers as channels respectively, a common semiconductor layer which combines the first to n-th semiconductor layers at first ends of the first to n-th memory strings in the second direction.
Abstract:
According to one embodiment, a nonvolatile semiconductor memory device includes first to n-th semiconductor layers which are stacked in a first direction perpendicular to a surface of a semiconductor substrate and which extend in a second direction parallel to the surface of the semiconductor substrate, an electrode which extends in the first direction along side surfaces of the first to n-th semiconductor layers, the side surfaces of the first to n-th semiconductor layers exposing in a third direction perpendicular to the first and second directions, and first to n-th charge storage layers located between the first to n-th semiconductor layers and the electrode respectively. The first to n-th charge storage layers are separated from each other in areas between the first to n-th semiconductor layers.