摘要:
A semiconductor device manufacturing method of an embodiment includes the steps of: forming a first insulating layer on a semiconductor substrate; forming on the first insulating layer an amorphous or polycrystalline semiconductor layer having a narrow portion; forming on the semiconductor layer a second insulating layer having a thermal expansion coefficient larger than that of the semiconductor layer; performing thermal treatment; removing the second insulating layer; forming a gate insulating film on the side faces of the narrow portion; forming a gate electrode on the gate insulating film; and forming a source-drain region in the semiconductor layer.
摘要:
A method of manufacturing a semiconductor device according to an embodiment includes: forming a plurality of semiconductor layers located at a distance from one another on a first insulating film; forming a gate insulating film that covers both side faces and an upper face of each of the semiconductor layers; forming a gate electrode of a polysilicon film to cover the gate insulating film of each of the semiconductor layers; forming a second insulating film on an entire surface; exposing an upper face of the gate electrode by performing selective etching on a portion of the second insulating film; siliciding the gate electrode; and forming a stress applying film that applies a stress in a direction perpendicular to the extending direction of each of the semiconductor layers and parallel to an upper face of the first insulating film.
摘要:
An field effect transistor includes a first semiconductor region, a gate electrode insulatively disposed over the first semiconductor region, source and drain electrodes between which the first semiconductor region is sandwiched, and second semiconductor regions each formed between the first semiconductor region and one of the source and drain electrodes, and having impurity concentration higher than that of the first semiconductor region, the source electrode being offset to the gate electrode in a direction in which the source electrode and the drain electrode are separated from each other with respect to a channel direction, and one of the second semiconductor regions having a thickness not more than a thickness with which the one of second semiconductor regions is completely depleted in the channel direction being in thermal equilibrium with the source electrode therewith.
摘要:
An field effect transistor includes a first semiconductor region, a gate electrode insulatively disposed over the first semiconductor region, source and drain electrodes between which the first semiconductor region is sandwiched, and second semiconductor regions each formed between the first semiconductor region and one of the source and drain electrodes, and having impurity concentration higher than that of the first semiconductor region, the source electrode being offset to the gate electrode in a direction in which the source electrode and the drain electrode are separated from each other with respect to a channel direction, and one of the second semiconductor regions having a thickness not more than a thickness with which the one of second semiconductor regions is completely depleted in the channel direction being in thermal equilibrium with the source electrode therewith.
摘要:
A lead frame includes: an outer frame section; a plurality of chip mounting sections which are supported by the outer frame section and on which a plurality of semiconductor chips are mounted; lead sections surrounding the chip mounting sections; connecting sections for connecting and supporting the lead sections and the outer frame section with each other; and an encapsulation region in which the chip mounting sections are encapsulated together in an encapsulation resin. An opening is provided in a plurality of regions of the outer frame section that are each located outside the encapsulation region and along the extension of one of the connecting sections.
摘要:
In a semiconductor device manufacturing method, a first semiconductor region which includes a narrow portion and a wide portion is formed in an upper portion of a semiconductor substrate, a gate insulating film is formed on at least side surfaces of the narrow portion, a gate electrode is formed on the gate insulating film, a mask pattern that covers the wide portion is formed, ion implantation of an impurity is performed with the mask pattern as a mask to form an extension impurity region in the narrow portion, the mask pattern is removed, a heat treatment is performed to activate the impurity, a gate sidewall is formed on a side surface of the gate electrode, epitaxial growth of a semiconductor film is performed on the narrow portion and the wide portion after the formation of the gate sidewall, and source-drain regions is formed on both sides of the gate electrode.
摘要:
A semiconductor device of an embodiment includes a first conductive type silicon carbide substrate having first and second main surfaces, a first conductive type silicon carbide layer formed on the first main surface, a second conductive type first silicon carbide region formed in the silicon carbide layer, and a first conductive type second silicon carbide region formed in the first silicon carbide region. The device includes a trench penetrating through the first and second silicon carbide regions, and a second conductive type third silicon carbide region formed on a bottom and a side surface of the trench. The third silicon carbide region is in contact with the first silicon carbide region, and is formed between the trench and the silicon carbide layer. In addition, the device includes a gate insulating film formed in the trench, a gate electrode, a first electrode, and a second electrode.
摘要:
A method of manufacturing a semiconductor device according to an embodiment includes: forming a plurality of semiconductor layers located at a distance from one another on a first insulating film; forming a gate insulating film that covers both side faces and an upper face of each of the semiconductor layers; forming a gate electrode of a polysilicon film to cover the gate insulating film of each of the semiconductor layers; forming a second insulating film on an entire surface; exposing an upper face of the gate electrode by performing selective etching on a portion of the second insulating film; siliciding the gate electrode; and forming a stress applying film that applies a stress in a direction perpendicular to the extending direction of each of the semiconductor layers and parallel to an upper face of the first insulating film.
摘要:
A semiconductor device manufacturing method of an embodiment includes the steps of: forming a first insulating layer on a semiconductor substrate; forming on the first insulating layer an amorphous or polycrystalline semiconductor layer having a narrow portion; forming on the semiconductor layer a second insulating layer having a thermal expansion coefficient larger than that of the semiconductor layer; performing thermal treatment; removing the second insulating layer; forming a gate insulating film on the side faces of the narrow portion; forming a gate electrode on the gate insulating film; and forming a source-drain region in the semiconductor layer.
摘要:
A multi-gate field effect transistor includes: a plurality of semiconductor layers arranged in parallel on a substrate; source and drain regions formed in each of the semiconductor layers; channel regions each provided between the source region and the drain region in each of the semiconductor layers; protection films each provided on an upper face of each of the channel regions; gate insulating films each provided on both side faces of each of the channel regions; a plurality of gate electrodes provided on both side faces of each of the channel regions so as to interpose the gate insulating film, provided above the upper face of each of the channel region so as to interpose the protection film, and containing a metal element; a connecting portion connecting upper faces of the gate electrodes; and a gate wire connected to the connecting portion.