Abstract:
A process and apparatus for continuously depositing a coating on a fibrous material. The process is a chemical vapor deposition process that includes causing multiple strands of a fibrous material to continuously travel through a coating zone within an enclosed chamber defined by a housing so that portions of the strands contact a reactant gas as the portions travel through the chamber, directly heating the portions of the strands without physically contacting the strands and without directly heating the housing, and depositing a coating material on the strands as a result of the reactant gas contacting the portions of the strands and decomposing to form a coating of the coating material. Heating of the strands can be achieved by capacitive coupling, inductive coupling, microwave radiation, and radiant heating.
Abstract:
A radiation source is presented, the source comprising an ionizable mercury-free composition that comprises tin halide such that the halide to tin ratio is greater than 2.
Abstract:
Controlled generation of ozone is provided by flowing air around an electrodeless low pressure discharge lamp having high ultraviolet transmission properties. Power to the lamp is controlled by a circuit that is driven by a photocell for detecting visible light emissions from a phosphor triggered by ultraviolet radiation from the lamp upon the phosphor.
Abstract:
A system includes a silicon carbide (SiC) semiconductor device and a hermetically sealed packaging enclosing the SiC semiconductor device. The hermetically sealed packaging is configured to maintain a particular atmosphere near the SiC semiconductor device. Further, the particular atmosphere limits a shift in a threshold voltage of the SiC semiconductor device to less than 1 V during operation.
Abstract:
A system includes a silicon carbide (SiC) semiconductor device and a hermetically sealed packaging enclosing the SiC semiconductor device. The hermetically sealed packaging is configured to maintain a particular atmosphere near the SiC semiconductor device. Further, the particular atmosphere limits a shift in a threshold voltage of the SiC semiconductor device to less than 1 V during operation.
Abstract:
In one aspect of the present invention, a method is provided. The method includes disposing a substantially amorphous cadmium tin oxide layer on a support and rapidly thermally annealing the substantially amorphous cadmium tin oxide layer by exposing a first surface of the substantially amorphous cadmium tin oxide layer to an electromagnetic radiation to form a transparent layer. A method of making a photovoltaic device is also provided.
Abstract:
In one aspect of the present invention, a transparent electrode, is presented. The transparent electrode includes a substrate and a transparent layer disposed on the substrate. The transparent layer includes (a) a first region including cadmium tin oxide; (b) a second region including tin and oxygen; and (c) a transition region including cadmium, tin, and oxygen interposed between the first region and the second region, wherein an atomic ratio of cadmium to tin in the transition region varies across a thickness of the transition region. The second region further has an electrical resistivity greater than an electrical resistivity of the first region. A photovoltaic device, a photovoltaic module, a method of making is also presented.
Abstract:
A method for fabricating a component is disclosed. The method includes: providing a member having an effective work function of an initial value, disposing a sacrificial layer on a surface of the member, disposing a first agent within the member to obtain a predetermined concentration of the agent at said surface of the member, annealing the member, and removing the sacrificial layer to expose said surface of the member, wherein said surface has a post-process effective work function that is different from the initial value.
Abstract:
According to one embodiment, a semiconductor device, having a semiconductor substrate comprising silicon carbide with a gate electrode disposed on a portion of the substrate on a first surface with, a drain electrode disposed on a second surface of the substrate. There is a dielectric layer disposed on the gate electrode and a remedial layer disposed about the dielectric layer, wherein the remedial layer is configured to mitigate negative bias temperature instability maintaining a change in threshold voltage of less than about 1 volt. A source electrode is disposed on the remedial layer, wherein the source electrode is electrically coupled to a contact region of the semiconductor substrate.
Abstract:
An defect detection system includes an exoemission sensor having a conductive layer and an insulating layer. The exoemission sensor is mountable to a material of interest and configured to receive exoemissions from the material while in an atmosphere. The exoemission sensor outputs a signal based upon the received emissions. An analysis device is configured to receive the signal from the exoemission sensor and determine whether a defect is present in the material based upon the signal.