Abstract:
A radiation source is presented, the source comprising an ionizable mercury-free composition that comprises tin halide such that the halide to tin ratio is greater than 2.
Abstract:
An ionizable mercury-free and sodium-free composition is capable of emitting radiation if excited. A radiation source includes such an ionizable mercury-free and sodium-free composition. The ionizable mercury-free and sodium-free composition includes at least a metal, a metal and a metal compound, or a metal compound.
Abstract:
A high brightness discharge light source having improved thermal balance characteristics includes a lamp envelope having an arc chamber formed therein and a pair of electrodes extending into opposite ends of the arc chamber so as to be displaced from one another by a distance of no greater than 4 mm. A fill disposed within the arc chamber is excited to a discharge state upon the introduction of an excitation energy coupled through the pair of electrodes. The light source is operated vertically so that one of the electrodes is disposed at the top region and the other electrode is disposed at the bottom region of the arc chamber. The arc chamber is formed having a diameter dimension which is just larger than the spacing between the electrodes, and a height dimension which is approximately twice the diameter dimension. The diameter dimension is substantially uniform along the length of the arc chamber. The uniform diameter characteristic is effective so that the thermal operating properties associated with the discharge state are substantially equally distributed from the top to the bottom regions of the arc chamber thereby resulting in extending the life of this light source to approximately 6000 hours.
Abstract:
In a metallic vapor discharge lamp, in whose arc tube provided with electrodes are encapsulated together with mercury and inert gas, whose quantity is adequate for maintaining arc discharges, an adequate quantity of iron and an adequate quantity of a metal, in which at least one of the metals tin, magnesium, bismuth, thallium, cadmium or manganese is selected, together with halogen, as a result of the fact that the encapsulated halogen at least contains bromine, whose weight ratio to the total halogen is 0.26%, the adhesion of iron to the inside of the arc tube is prevented and consequently a radiation intensity of the ultraviolet rays effective for curing paints or inks is maintained over a long period of time.
Abstract:
A metal halide discharge lamp for use in plant growing is disclosed. The lamp of the present invention includes an outer envelope having an inner surface, the inner surface including thereon a phosphor layer, the phosphor being selected to convert ultraviolet wavelength radiation into radiation having a wavelength from about 710 to about 780 nanometers; and a silica quartz shaped arc tube with central part being expanded including therein a pair of spaced electrodes and a chemical fill, the chemical fill comprising mercury, an inert gas, indium halide, lithium halide, sodium halide, and cesium halide. A preferred phosphor comprises iron-doped lithium aluminate. A most preferred chemical fill includes indium iodide, lithium iodide, sodium iodide, and cesium iodide in a molar ratio 0.6 to 7.4 to 1.3 to 0.4, respectively, mercury, and an inert gas.
Abstract:
A magnesium vapor discharge lamp includes a light-emitting tubing in which magnesium and a halogen are sealed as light-emitting substances together with mercury and a rare gas in amounts sufficient to retain a discharge. Iron is additionally sealed within the light-emitting tubing.
Abstract:
A meal vapor discharge lamp having an outer jacket, the inside wall of which is covered by a fluorescent layer comprising at least one red emitting phosphor whose emission peak is in a wavelength range of 610-630 nm and whose luminescence forms a line, said lamp containing an arc tube within the confines of said outer jacket which encloses zinc and/or cadmium in addition to mercury as the main luminous components.
Abstract:
A metal halide arc discharge lamp comprises an arc tube having electrodes at its ends and containing a fill including mercury, a starting gas, elemental scandium and at least about 2.6.times.10.sup.-6 gram atoms of scandium halide and 3.0.times.10.sup.-5 gram atoms of sodium halide per centimeter of arc length.
Abstract:
A high pressure metal halide discharge lamp of the sodium-scandium type which has the maintenance thereof improved by the addition of a small quantity of lead metal powder. The lead metal powder is added to the discharge sustaining fill in an amount of from between about 0.4 and 1.2 wt. % of the total amount of discharge sustaining fill.
Abstract:
Miniature metal vapor arc lamps containing mercury and one or more metal halides are subject to severe blackening of the arc tube and poor lumen maintenance unless a high pressure of starting gas is used. A Penning mixture of neon admixed with 0.01 to 10% argon, krypton or xenon at a fill pressure from about 100 to 200 torr provides lower starting voltage together with better lumen maintenance than can be achieved with the conventional argon starting gas.