Abstract:
An optical coupling assembly is useful for coupling a source of light, having high brightness and being non-coherent and focussed at a focal plane, to a plurality of optical light conductors. The coupling assembly includes an elongated light transmissive coupling member which has a central longitudinal axis and is disposed between the focal plane of the light source and leading ends of the optical light conductors. The coupling member includes oppositely flared front and rear end portions and a middle portion disposed along the longitudinal axis, with the middle portion extending between and connected to the front and rear end portions. The coupling member can have either a solid or tubular configuration. The middle portion of the coupling member has cylindrical shape and cross-sectional size of uniform dimensions and being less than the respective cross-sectional sizes of an inlet end of the front end portion and an outlet end of the rear end portion. The front end portion of the coupling member can have either a frusto-conical or parabolic shape, whereas the rear end portion can have a frusto-conical or parabolic shape being oriented in the reverse of the frusto-conical or parabolic shape of the front end portion. The rear end portion has a greater axial length than the front end portion and the outlet end of the rear end portion is larger in size than the inlet end of the front end portion.
Abstract:
A light coupling arrangement for efficiently coupling a light source to a light distribution arrangement includes a solid optical coupling device constructed of a light transmissive material and configured in an essentially planar manner such that the length and width dimensions are significantly greater than the depth dimension. An aperture is formed on at least one side along the equatorial surface of the optical coupling device and allows connection to the light distribution arrangement. A bore, formed in the optical coupling device and having a flat polished surface, houses the light source in a manner such that the optical coupling device can act as a heat sink for the light source.
Abstract:
A high brightness discharge light source having improved thermal balance characteristics includes a lamp envelope having an arc chamber formed therein and a pair of electrodes extending into opposite ends of the arc chamber so as to be displaced from one another by a distance of no greater than 4 mm. A fill disposed within the arc chamber is excited to a discharge state upon the introduction of an excitation energy coupled through the pair of electrodes. The light source is operated vertically so that one of the electrodes is disposed at the top region and the other electrode is disposed at the bottom region of the arc chamber. The arc chamber is formed having a diameter dimension which is just larger than the spacing between the electrodes, and a height dimension which is approximately twice the diameter dimension. The diameter dimension is substantially uniform along the length of the arc chamber. The uniform diameter characteristic is effective so that the thermal operating properties associated with the discharge state are substantially equally distributed from the top to the bottom regions of the arc chamber thereby resulting in extending the life of this light source to approximately 6000 hours.
Abstract:
Miniature high pressure arc lamps containing a substantial pressure of xenon, in addition to metal halide and mercury, can provide instant light at turn-on and are suitable for automotive headlamps. The xenon aggravates convection which causes arc-bowing and overheating of the envelope above the arc. By operating the lamps on unidirectional current upon which a frequency-modulated high frequency ripple has been imposed, acoustic resonance is used to straighten out the arc. The use of unidirectional current permits a reduction in cost and size of the ballast control circuits operated from auto storage battery. Frequency modulation of the ripple broadens the band allowing acoustic straightening of the arc. Additional control of the arc plus reduction of cataphoresis may be achieved through a horizontal magnetic field at the arc, transverse to current flow.
Abstract:
A lamp-to-light guide coupling arrangement includes an electrodeless high intensity discharge lamp comprising an arc tube with an ionizable fill, and an excitation circuit for electrically exciting the ionizable fill to induce therein a light-producing arc discharge. The coupling arrangement further includes a coupling device comprising a generally tubular, hollow body that has an inlet end for receiving light from the arc discharge and a larger, outlet end. The coupling device further comprises an interiorly directed reflector on a surface of the hollow body for reflecting visible light. Such coupling device is shaped so as to receive light at one solid angle over an area of the inlet end and to transmit light at a smaller solid angle but over a larger area of the outlet end. The coupling device is preferably formed from dielectric material. The reflector preferably comprises a refractory optical interference filter.
Abstract:
A projection headlamp system for a vehicle includes a high beam subsystem and a low beam subsystem. Each of the high and low beam subsystems includes a pair of light pattern projecting arrangements, a remote single arc discharge light source, a pair of solid optical coupling devices, and a pair of elongated light distributing conductors coupled at output ends to the pair of light pattern projecting arrangements and coupled at input ends to the pair of solid optical coupling devices. The high and low beam subsystems employ either separate single arc discharge light sources or a common single arc discharge light source.
Abstract:
Improved collection optics for a lighting system comprised of a light source, reflector and light receptive component include a multi-portion reflector or a non-imaging optical collector having a positive curvature located at an input end to the light receptive component. The collection optics capture additional lumens for transmission through the light guide. The optical arrangement can also collect different colors of light from the source that would otherwise be omitted from transmission through the light receptive component.
Abstract:
Asymmetric discharge electrode means are provided for a metal halide lamp enabling improved operation at acoustic frequencies. A xenon-metal halide lamp employing such improved discharge electrode means is disclosed together with a reflector lamp unit employing such lamp construction for its light source.