Abstract:
An interference filter or coating is provided in a predetermined pattern on a lamp envelope. The coating is comprised of alternating layers of high and low index of refraction materials applied to a vitreous outer surface of a lamp envelope. The coating may be geometrically symmetric or asymmetric, continuous or discontinuous with respect to the coating itself or the envelope to which it has been applied. The envelope can be masked prior to deposition of the coating so that removal of the mask leaves the filter in the desired pattern. The preferred process for forming the coating includes forming a boric oxide mask on a portion of the envelope, applying the coating over the mask and removing the coating from masked areas of the envelope by dissolving the mask in an aqueous solution.
Abstract:
An interference filter or coating is provided in a predetermined pattern on a lamp envelope. The coating is comprised of alternating layers of high and low index of refraction materials applied to a vitreous outer surface of a lamp envelope. The coating may be geometrically symmetric or asymmetric, continuous or discontinuous with respect to the coating itself or the envelope to which it has been applied. The envelope can be masked prior to deposition of the coating so that removal of the mask leaves the filter in the desired pattern. The preferred process for forming the coating includes forming a boric oxide mask on a portion of the envelope, applying the coating over the mask and removing the coating from masked areas of the envelope by dissolving the mask in an aqueous solution.
Abstract:
A simulated load circuit for measuring the impedance of the arc discharge of an electrodeless discharge lamp of the type having an arc tube and an excitation coil for exciting the arc discharge in an ionizable fill contained therein includes: a secondary coil spaced apart from the excitation coil by a distance which is varied in order to vary the coupling coefficient between the secondary coil and the excitation coil; a fixed load resistance coupled to the secondary coil; and a variable matching network coupled in series or parallel with the load resistance, the impedance of the matching network being varied in order to vary the ratio of reactance to resistance of the load circuit. The distance between the secondary coil and the excitation coil is varied, and the impedance of the matching network is varied, until the input impedance of the load circuit is substantially equivalent to the operating impedance of the lamp. The simulated load circuit is useful for designing and testing ballast circuits for electrodeless discharge lamps and for providing measurements of arc discharge power and excitation coil efficiency.
Abstract:
The fill of a self-extinguishing gas probe starter for an electrodeless high intensity discharge lamp includes a starter fill component which has a relatively low vapor pressure and is substantially inert in the starter fill at ambient temperatures, but which component vaporizes and becomes electronegative as the temperature of the lamp increases, so that the starter fill component attaches electrons of the starting discharge in the gas probe starter and thereby extinguishes the starting discharge after initiation of the arc discharge in the arc tube. As a result, the flow of currents between the gas probe starter and the arc tube, which would otherwise have a detrimental effect on the arc tube wall, is avoided.
Abstract:
An electrodeless high intensity discharge (HID) lamp having an arc tube, a starting aid, and an outer jacket all integrally formed of fused quartz, includes an excitation circuit for providing RF energy effective for initiating and maintaining a gas discharge within the arc tube. The arc tube is positioned within the outer jacket such that a minimum space exists between the outer jacket and the arc tube thereby allowing the efficient coupling of such RF energy to the arc tube by means of an excitation coil wound in close proximate location to the arc tube. The starting aid is of a substantially smaller dimension than the arc tube thereby allowing for a second spacing to occur above the arc tube. This second spacing is effective for optimum thermal management of heat generated within the outer jacket. The upper end of the outer jacket has an integrally formed annular groove for receiving an annular support member effective for securing the HID lamp to a lighting fixture.
Abstract:
A high intensity metal halide arc discharge lamp, such as an electrodeless lamp wherein RF energy is inductively coupled to the arc discharge, contains a halide of neodymium alone or in combination with other metals such as one or more rare earth metals, Na, Cs and is essentially mercury free (i.e.,
Abstract:
An electrodeless high intensity discharge (HID) lamp arc tube having a stabilized condensate location. The arc tube contains a predetermined location or distortion on the inside surface of the arc tube. The distortion may be a protrusion on the inside surface of the arc tube formed during the arc tube forming process. In operation of the lamp, the non gaseous dose remains condensed substantially in the cold spot region formed by said protrusion so that the arc tube walls remain clear for maximal light output, and the arc tube remains stable and efficacious to substantially higher power than is the case for arc tubes without the distortion.
Abstract:
This electrodeless high intensity discharge lamp including a light-transmissive arc tube having spaced wall portions of dielectric material and a first gaseous fill within the arc tube. An excitation coil about the arc tube is energizable with RF current effective to develop a toroidal arc discharge in the first gaseous fill upon a dielectric breakdown of the fill. A starting container is joined to the arc tube and has an end wall constituted by one of said arc-tube wall portions. A second gaseous fill within the starting container has a dielectric strength lower than that of the first gaseous fill. For initiating the rotoidal arc discharge, we provide an arrangement for producing a dielectric breakdown of the gaseous fill within the starting container that develops into an electric discharge that changes the potential at the end wall in such a manner as to cause a dielectric breakdown of the first gaseous fill.
Abstract:
This electrodeless high intensity discharge lamp comprises a light-transmissive arc tube having spaced wall portions of dielectric material and a first gaseous fill within the arc tube. An excitation coil about the arc tube is energizable with RF current effective to develop a toroidal arc discharge in the first gaseous fill upon a dielectric breakdown of the fill. A starting container is joined to the arc tube and has an end wall constituted by one of arc-tube wall portions. A second gaseous fill within the starting container has a dielectric strength lower than that of the first gaseous fill. For initiating toroidal arc discharge, we provide an arrangement for producing a dielectric breakdown of the gaseous fill within the starting container that develops into an electric discharge that changes the potential at end wall in such a manner as to cause a dielectric breakdown of first gaseous fill.
Abstract:
An improved high intensity arc discharge lamp is disclosed having curved projection means included when a bowed shape arc discharge is being closed to preclude molten vitreous material from deforming the internal cavity. In this manner, the arc tube internal cavity is more reliably shaped and sized with the discharge electrodes being more accurately positioned within the internal cavity. Such curved projection means are provided in each pinch seal region of the arc tube and can be formed mechanically with the jaw members ordinarily employed for the pinch sealing operation.