Abstract:
A solid-state image pickup device including: a resin package which includes a recessed section; a solid-state image pickup element disposed in the recessed section; and a cover fixed to the recessed section via a fixing member so as to cover the solid-state image pickup element, wherein: the resin package includes a substrate integrated therewith; the substrate includes a first protruding section, a second protruding section and a branched section, the first and second protruding sections protruding from a first side of the resin package, and the branched section being disposed inside the resin package and disposed between the first and second protruding sections; and an outer peripheral section of the fixing member is disposed inside an end of the branched section when seen from the direction in which light is incident.
Abstract:
A plurality of inner leads, a plurality of outer leads formed in one with each of the inner lead, a bar lead of the square ring shape arranged inside a plurality of inner leads, a corner part lead which has been arranged between the inner leads of the end portion of the inner lead groups which adjoin among four inner lead groups corresponding to each side of the bar lead, and was connected with the bar lead, and a tape member joined to the tip part of each inner lead, a bar lead, and a corner part lead are included. Since the corner part lead is formed as an object for reinforcement of a frame body between adjoining inner lead groups, the rigidity of the lead frame can be increased.
Abstract:
A semiconductor device has an improved mounting reliability and has external terminals formed by exposing portions of leads from a back surface of a resin sealing member. End portions on one side of the leads are fixed to a back surface of a semiconductor chip, and portions of the leads positioned outside the semiconductor chip are connected with electrodes formed on the semiconductor chip through wires.
Abstract:
The cost of a semiconductor device is to be reduced. An electrical connection between a first semiconductor chip and a second semiconductor chip stacked on the first semiconductor chip is made through an inner lead portion of a lead disposed at a position around the first semiconductor chip and two bonding wires.
Abstract:
To provide a test technology capable of reducing a package size by reducing a number of terminals (pins) in a semiconductor integrated circuit of SIP or the like constituted by mounting a plurality of semiconductor chips to a single package, in SIP 102 constituted by mounting a plurality of semiconductor chips to a signal package of ASIC 100, SDRAM 101 and the like, a circuit of testing SDRAM 101 (SDRAMBIST 109) is provided at inside of ASIC 100, and SDRAM 101 is tested from outside of SDRAM 101, that is, from ASIC 100. By providing the test circuit of SDRAM 101 at inside of ASIC 100, it is not necessary to extrude a terminal for testing SDRAM 101 to outside of SIP 102.
Abstract:
The present invention can supply power for each circuit section by separating and connecting bus-bar (21d) for each circuit section inside the semiconductor chip (22), and, in addition, can increase the number of pads (22a) for power supply or can use the lead (21a) conventionally used for power supply for signals by further making the best of the characteristics that enable the connection to bus-bar (21d) irrespective of the inner lead (21b) pitch, by making the pitch of the pad (22a) smaller than the pitch of the inner lead (21b), or by forming the pad (22a) in a zigzag arrangement.
Abstract:
A method for manufacturing a semiconductor device includes the steps of providing a semiconductor device of a surface mounted type in which the main surface of a chip mounting portion connected to a semiconductor chip is formed so as to be smaller than the main surface of the semiconductor chip, accommodating the semiconductor device into a non-moistureproof, e.g., flammable, packing, and shipping the packed semiconductor device. The non-moistureproof packing may have a moisture permeability of T T≧1 g/m2/24 hr. The method may also include providing a second semiconductor device of a surface-mounted type in which the main surface of a chip mounting portion connected to a semiconductor chip is formed so as to be larger than the main surface of the semiconductor chip, moistureproof-packing the second semiconductor device, and shipping and packed second semiconductor device.
Abstract:
A process is provided for the fabrication of a plastic molded type semiconductor device in which a die pad is formed to have a smaller area than a semiconductor chip to be mounted on a principal surface of the die pad and the semiconductor chip and die pad are sealed with a plastic mold. The semiconductor chip and the die pad are disposed within a cavity of a mold so that the clearance from the reverse surface of the die pad to the inside wall surface of the cavity opposite to the reverse surface of the die pad becomes narrower, by a length corresponding to the thickness of the die pad, than the clearance from the principal surface of the semiconductor chip to the inside wall surface of the cavity opposite to the principal surface of the semiconductor chip; and a resin is poured from a center gate into said cavity to form a plastic mold, which makes it possible to prevent said semiconductor chip from being lifted upwardly by the resin flowing in a filling region on the reverse surface side of the semiconductor chip. As a result, inconvenient shifting of the semiconductor chip, bonding wires and the like in the plastic mold can be prevented, leading to an increase in the yield of the plastic molded type semiconductor device.
Abstract:
In a semiconductor device having a heat radiation plate, the tips of inner leads connected to a semiconductor chip have a lead width w and a lead thickness t, the width being less than the thickness. The inner leads are secured to the heat radiation plate. Fastening the inner leads to the heat radiation plate supports the latter and eliminates the need for suspending leads. A lead pitch p, the lead width w and lead thickness t of the inner lead tips connected to the semiconductor chip have the relations of w
Abstract:
A process is provided for the fabrication of a plastic molded type semiconductor device in which a die pad is formed to have a smaller area than a semiconductor chip to be mounted on a principal surface of the die pad and the semiconductor chip and die pad are sealed with a plastic mold. The semiconductor chip and the die pad are disposed within a cavity of a mold so that the clearance from the reverse surface of the die pad to the inside wall surface of the cavity opposite to the reverse surface of the die pad becomes narrower, by a length corresponding to the thickness of the die pad, than the clearance from the principal surface of the semiconductor chip to the inside wall surface of the cavity opposite to the principal surface of the semiconductor chip; and a resin is poured from a center gate into said cavity to form a plastic mold, which makes it possible to prevent said semiconductor chip from being lifted upwardly by the resin flowing in a filling region on the reverse surface side of the semiconductor chip. As a result, inconvenient shifting of the semiconductor chip, bonding wires and the like in the plastic mold can be prevented, leading to an increase in the yield of the plastic molded type semiconductor device.