Abstract:
Methods processing substrates are provided. The method may include providing a bonding layer between a substrate and a carrier to bond the substrate to the carrier, processing the substrate while the substrate is supported by the carrier, and removing the bonding layer to separate the substrate from the carrier. The bonding layer may include a thermosetting glue layer and thermosetting release layers provided on opposing sides of the thermosetting glue layer.
Abstract:
Provided are a bump structure includes a first bump and a second bump, a semiconductor package including the same, and a method of manufacturing the same. The bump structure includes: first bump provided on a connection pad of a substrate, the first bump including a plurality of nano-wires extending from the connection pad and a body connecting end portions of the plurality of nano-wires; and a second bump provided on the body of the first bump.
Abstract:
A multi-chip package may include a package substrate, an interposer chip, a first semiconductor chip, a thermal dissipation structure and a second semiconductor chip. The interposer chip may be mounted on the package substrate. The first semiconductor chip may be mounted on the interposer chip. The first semiconductor chip may have a size smaller than that of the interposer chip. The thermal dissipation structure may be arranged on the interposer chip to surround the first semiconductor chip. The thermal dissipation structure may transfer heat in the first semiconductor chip to the interposer chip. The second semiconductor chip may be mounted on the first semiconductor chip. Thus, the heat in the first semiconductor chip may be effectively transferred to the interposer chip through the thermal dissipation line.
Abstract:
In one embodiment, a semiconductor device includes a semiconductor substrate having a first surface, and a second surface opposite to the first surface. The second surface defines a redistribution trench. The substrate has a via hole extending therethrough. The semiconductor device also includes a through via disposed in the via hole. The through via may include a via hole insulating layer, a barrier layer, sequentially formed on an inner wall of the via hole. The through via may further include a conductive connector adjacent the barrier layer. The semiconductor device additionally includes an insulation layer pattern formed on the second surface of the substrate. The insulation layer pattern defines an opening that exposes a region of a top surface of the through via. The semiconductor devices includes a redistribution layer disposed in the trench and electrically connected to the through via. The insulation layer pattern overlaps a region of the conductive connector.
Abstract:
A method of forming a semiconductor device includes preparing a semiconductor substrate having a plurality of chips formed thereon and a scribe lane disposed between the chips, simultaneously forming a groove having a first depth in the scribe lane, and a through hole penetrating the chips and having a second depth. The chips are separated along the groove. The first depth is smaller than the second depth.
Abstract:
Provided are a semiconductor package and a method of manufacturing the same. The semiconductor package includes a semiconductor chip, a transparent substrate, an adhesive pattern, and at least one dew-proofer. The semiconductor includes a pixel area. The transparent substrate is disposed on the semiconductor chip. The adhesive pattern is disposed between the semiconductor chip and the transparent substrate and provides a space on the pixel area. At least one dew-proofer is disposed between the semiconductor chip and the transparent substrate and spaced from the adhesive pattern.
Abstract:
In accordance with the present invention, there is provided a semiconductor package (e.g., a QFP package) including a uniquely configured leadframe sized and configured to maximize the available number of exposed leads in the semiconductor package. More particularly, the semiconductor package of the present invention includes a generally planar die pad or die paddle defining multiple peripheral edge segments. In addition, the semiconductor package includes a plurality of leads. Some of these leads are provided in two concentric rows or rings which at least partially circumvent the die pad, with other leads including portions which protrude from respective side surfaces of a package body of the semiconductor package. Connected to the top surface of the die pad is at least one semiconductor die which is electrically connected to at least some of the leads. At least portions of the die pad, the leads, and the semiconductor die are encapsulated by the package body.
Abstract:
An image sensor package, a method of manufacturing the same, and an image sensor module including the image sensor package are provided. In the image sensor package, an image sensor chip is installed onto a depression of a transmissive substrate. An adhesive bonds the image sensor chip to the transmissive substrate and seals an Active Pixel Sensor (APS) on the image sensor chip, protecting it from fine particle contamination. An IR cutting film is disposed on the transmissive substrate to minimize the height of the image sensor package. The image sensor package is electrically connected to external connection pads in the depression. Consequently, the image sensor package has a minimum height, is not susceptible to particle contamination, and does not require expensive alignment processes during manufacturing.
Abstract:
A method of manufacturing a semiconductor device includes forming a diffusion barrier layer on a substrate, and forming at least two features on the substrate such that the diffusion barrier layer is respectively disposed between each feature and the substrate and contacts the at least two features. A first impurity region of the substrate contains impurities of a first type, a second impurity region of the substrate contains impurities of a second type, different from the first type, a first feature of the at least two features is in the first impurity region, and a second feature of the at least two features is in the second impurity region, such that the second feature is electrically isolated from first feature by the different impurity regions.
Abstract:
A stack type semiconductor chip package includes a first wafer mold, a protection substrate, and a second wafer mold that are stacked in a wafer level process. The first wafer mold includes a first chip having first pads and a first mold layer encapsulating the first chip. The protection substrate is placed on the first wafer mold, is mechanically bonded with the first wafer mold using a first adhesive layer, and includes wiring layers facing the first pads. The second wafer mold is placed under the first wafer mold, is mechanically bonded with the first wafer mold using a second adhesive layer, and includes a second chip having second pads, and a second mold layer encapsulating the second chip. First vias electrically connect the wiring layers of the protection substrate with the second pads. Second vias electrically connect the wiring layers of the protection substrate with external connection terminals.