Abstract:
Provided are pharmaceutical foam compositions comprising a peptone, a peptide hydrolysate or an enzymatically-hydrolyzed protein prepared by enzymatic hydrolysis of a full-length protein; methods of preparation and uses thereof.
Abstract:
A device for preparing a biological wound dressing made of autologous fibrin. The device includes a cylindrical container with a bottom which is inclined from the side slopes towards a central channel with a slope that leads the liquid sealant remaining from pressing the fibrin clot through the sieve towards the outlet and from there to the multiduct collection system.
Abstract:
A therapeutic composition can include an amount of amniotic fluid having a therapeutically effective amount of at least one protein, hyaluronic acid, or both. The therapeutic composition can be substantially free of lanugo, vernix, and cells harvested with the amniotic fluid.
Abstract:
Provided are pharmaceutical foam compositions comprising a peptone, a peptide hydrolysate or an enzymatically-hydrolyzed protein prepared by enzymatic hydrolysis of a full-length protein; methods of preparation and uses thereof.
Abstract:
A biogel, and kits, agents, and methods for formation of the biogel are described. The biogel can be used for a variety of applications, including haemostasis, wound sealing, tissue engineering or localized drug delivery.
Abstract:
Described herein is the synthesis of reinforced adhesive complex coacervates and their use thereof. The reinforced adhesive complex coacervates are composed of (a) at least one polycation, (b) at least one polyanion, and (c) a reinforcing component. The adhesive complex coacervates described herein can be subsequently cured to produce strong, cohesive adhesives. The reinforced adhesive complex coacervates have several desirable features when compared to conventional adhesives. The reinforced adhesive complex coacervates are effective in wet or underwater applications. The reinforced adhesive complex coacervates described herein, being phase separated from water, can be applied underwater without dissolving or dispersing into the water. The reinforced adhesive complex coacervates have numerous biological applications as bioadhesives and bioactive delivery devices. In particular, the reinforced adhesive complex coacervates described herein are particularly useful in underwater applications and situations where water is present such as, for example, wet tissues in physiological conditions.
Abstract:
Embodiments of the present disclosure include medical apparatus, and related methods thereof. The apparatus may include a longitudinally extending lead, at least one electrode, an anchor component, and a control module. The lead may include a distal end and a proximal end. The at least one electrode may be coupled to the lead, wherein the at least one electrode may be disposed on the distal end of the lead. The anchor component may be disposed in the lead proximate of the at least one electrode. The anchor component may include solder. The control module may be operably coupled to the proximal end of the lead and may be configured to deliver energy to the at least one electrode.
Abstract:
A biological tissue adhesive composition is provided. The biological tissue adhesive composition comprises one or more macromolecules grafted with at least one catechol moiety and comprising at least one cross-linkable functional group, a first cross-linker for cross-linking the at least one catechol moiety, wherein the first cross-linker comprises or consists or 10 a multivalent metal ion, and a second cross-linker for covalently cross-linking the at least one cross-linkable functional group, wherein the one or more macromolecules are cross-linked by (a) complex formation between the at least one catechol moiety and the multivalent metal ion, and (b) covalent bonding of the at least one cross-linkable functional group with the second cross-linker. Fabrication method and working principle of a biological tissue adhesive 15 composition are also provided.
Abstract:
A method of joining and/or sealing tissues in a surgical procedure or medical treatment, comprising the steps of: (1) applying a matrix protein, a photoactivatable metal-ligand complex and an electron acceptor to a tissue portion; (2) irradiating said tissue portion to photoactivate the photoactivatable metal-ligand complex; thereby initiating a cross-linking reaction of the matrix protein to seal said tissue portion or join said tissue portion to an adjacent tissue portion.
Abstract:
Bone filler compositions, methods of making and using the same, and methods of treating osteoporosis and cancer-induced bone defects, are described.