Abstract:
Provided are wafer level package with a sealing line that seals a device and includes electroconductive patterns as an electrical connection structure for the device, and a method of packaging the same. In the wafer level package, a device substrate includes a device region, where a device is mounted, on the top surface. A sealing line includes a plurality of non-electroconductive patterns and a plurality of electroconductive patterns, and seals the device region. A cap substrate includes a plurality of vias respectively connected to the electroconductive patterns and is attached to the device substrate by the sealing line. Therefore, a simplified wafer level package structure that accomplishes electric connection through electroconductive patterns of a sealing line can be formed without providing an electrode pad for electric connection with a device.
Abstract:
A micro-electro-mechanical systems (MEMS) component includes a panel, a chip having an underside containing active component structures, where the chip is mounted on the panel via bumps, a frame structure on the panel and enclosing an installation site of the chip, and a jet-printed structure closing a seam between frame structure and chip. The jet-printed structure has an upper edge that is above a lower edge of the chip.
Abstract:
A method of producing a crystalline substrate based device includes forming a microstructure on a crystalline substrate. At least one packaging layer is sealed over the microstructure by an adhesive and defines therewith at least one gap between the crystalline substrate and the at least one packaging layer.
Abstract:
A method for forming a vibrating micromechanical structure having a single crystal silicon (SCS) micromechanical resonator formed using a two-wafer process, including either a Silicon-on-insulator (SOI) or insulating base and resonator wafers, wherein resonator anchors, capacitive air gap, isolation trenches, and alignment marks are micromachined in an active layer of the base wafer; the active layer of the resonator wafer is bonded directly to the active layer of the base wafer; the handle and dielectric layers of the resonator wafer are removed; windows are opened in the active layer of the resonator wafer; masking the active layer of the resonator wafer with photoresist; a SCS resonator is machined in the active layer of the resonator wafer using silicon dry etch micromachining technology; and the photoresist is subsequently dry stripped. A patterned SCS cover is bonded to the resonator wafer resulting in hermetically sealed chip scale wafer level vacuum packaged devices.
Abstract:
An integrated circuit is provided which includes one or more device elements formed above a base substrate, a structure forming a sealed cavity above at least a portion of the one or more device elements, and one or more conductive devices formed above the sealed cavity. A method for fabrication of such an integrated circuit is also provided. An exemplary embodiment of the integrated circuit includes a surface acoustic wave device having a plurality of tracks each with a first interdigitated transducer configured to convert a receiving electric field energy into mechanical wave energy and a second interdigitated transducer configured to convert the mechanical wave energy into an output electric field energy. The SAW device also includes a conductor arranged above and spanning across at least two tracks of the plurality of tracks and coupled to the first interdigitated transducers of at least the two tracks.
Abstract:
A method of making a plurality of sealed assemblies is provided which includes a) assembling a first element to a second element so that a bottom surface of the first element faces downwardly toward a front surface of the second element and a top surface of the first element faces upwardly away from the second element; and (b) forming ring seals surrounding regions of the front surface of the second element by introducing flowable material between the first element and the second element from the top surface of the first element through openings in the first element. A chip is provided which includes: (a) a body defining a front surface and one or more circuit elements on or within the body; (b) one or more bond pads exposed at the front surface in a bond pad region; and (c) a metallic ring exposed at the front surface, the ring substantially surrounding the bond pad region. Sealed chip assemblies are formed by sealing an array of the chips, e.g., in wafer form, to a cap element.
Abstract:
A microelectromechanical (MEMS) resonator with a vacuum-cavity is fabricated using polysilicon-enabled release methods. A vacuum-cavity surrounding the MEMS beam is formed by removing release material that surrounds the beam and sealing the resulting cavity under vacuum by depositing a layer of nitride over the structure. The vacuum-cavity MEMS resonators have cantilever beams, bridge beams or breathing-bar beams.
Abstract:
A microelectromechanical (MEMS) resonator with a vacuum-cavity is fabricated using polysilicon-enabled release methods. A vacuum-cavity surrounding the MEMS beam is formed by removing release material that surrounds the beam and sealing the resulting cavity under vacuum by depositing a layer of nitride over the structure. The vacuum-cavity MEMS resonators have cantilever beams, bridge beams or breathing-bar beams.
Abstract:
A method for making a microstructure assembly, the method including the steps of providing a first substrate and a second substrate; depositing an electrically conductive material on the second substrate; contacting the second substrate carrying the electrically conductive material with the first substrate; and then supplying current to the electrically conductive material to locally elevate the temperature of said electrically conductive material and cause formation of a bond between the first substrate and the second substrate.
Abstract:
A method of fabricating a microstructure having an inside cavity. The method includes depositing a first layer or a first stack of layers in a substantially closed geometric configuration on a first substrate. Then, performing an indent on the first layer or on the top layer of said first stack of layers. Then, depositing a second layer or a second stack of layers substantially with said substantially closed geometric configuration on a second substrate. Then, aligning and bonding said first substrate on said second substrate such that a microstructure having a cavity is formed according to said closed geometry configuration.