摘要:
Provided is a sensor interface including a first cantilever beam bundle including at least one resonator and a first output terminal, a second cantilever beam bundle including at least one resonator and a second output terminal, and a differential amplifier including a first input terminal electrically connected to the first output terminal of the first cantilever beam bundle and a second input terminal electrically connected to the second output terminal of the second cantilever beam bundle.
摘要:
An acoustic resonator includes a wafer and a first phononic crystal disposed on the wafer to define an acoustic waveguide so as to propagate an acoustic wave along a propagation direction. The first phononic crystal includes a first two-dimensional (2D) array of metal stripes having a first period on the propagation direction. The apparatus also includes a second phononic crystal and a third phononic crystal disposed on two sides of the first phononic crystal and having a different period from the first period. The second phononic crystal and the wafer define a first reflector to reflect the acoustic wave. The third phononic crystal and the wafer define a second reflector to reflect the acoustic wave.
摘要:
A vibration transducer includes a silicon substrate, a first oxide film formed on the silicon substrate, an activation layer formed on the first oxide film, a second oxide film formed on the activation layer, a polysilicon layer formed on the second oxide film, and a substrate contact part. A vibrator, a vibrator electrode electrically conducted with the vibrator, a fixed electrode close to the vibrator and a vacuum chamber configured to surround the vibrator are formed in the activation layer. The polysilicon layer forms a shell. The substrate contact part is configured to electrically conduct the polysilicon layer and the silicon substrate, and is formed to continuously surround the vacuum chamber in a region, in which the vibrator, the vibrator electrode and the fixed electrode of the activation layer are not formed, of the activation layer.
摘要:
A resonant member of a MEMS resonator oscillates in a mechanical resonance mode that produces non-uniform regional stresses such that a first level of mechanical stress in a first region of the resonant member is higher than a second level of mechanical stress in a second region of the resonant member. A plurality of openings within a surface of the resonant member are disposed more densely within the first region than the second region and at least partly filled with a compensating material that reduces temperature dependence of the resonant frequency corresponding to the mechanical resonance mode.
摘要:
A deep trench (DT) MEMS resonator includes a periodic array of unit cells, each of which includes a single DT formed in a semiconductor substrate and filled with a material whose acoustic impedance is different than that of the substrate. The filled DT is used as both an electrical capacitor and a mechanical structure at the same time, making it an elegant design that reduces footprint and fabrication complexity. Adding a second DT to each unit cell in a DT MEMS resonator forms a dual-trench DT (DTDT) MEMS resonator. In a DTDT unit cell, the first DT is filled with a conductor to sense, conduct, and/or generate an acoustic wave. The second DT in the DTDT unit cell is filled with an insulator. The width, filling, etc. of the second DT in the DTDT unit cell can be selected to tune the acoustic passband of the DTDT unit cell.
摘要:
A resonator circuit, a filter with improved tunability, and a duplexer with improved tunability are disclosed. In an embodiment, the resonator circuit includes a resonator, a Z transformer and an impedance circuit, wherein the impedance circuit has an impedance Z and includes an impedance element, wherein the Z transformer is interconnected between the resonator and the impedance circuit, and wherein the Z transformer transforms the impedance Z to a new impedance Z′≠Z and comprises a transformation circuit selected from: a generalized impedance converter (GIC), an negative impedance converter (NIC), a generalized impedance inverter (GII) and an negative impedance inverter (NII).
摘要:
A resonant member of a MEMS resonator oscillates in a mechanical resonance mode that produces non-uniform regional stresses such that a first level of mechanical stress in a first region of the resonant member is higher than a second level of mechanical stress in a second region of the resonant member. A plurality of openings within a surface of the resonant member are disposed more densely within the first region than the second region and at least partly filled with a compensating material that reduces temperature dependence of the resonant frequency corresponding to the mechanical resonance mode.
摘要:
A micro-electrical-mechanical systems (MEMS) device includes a substrate, one or more anchors formed on a first surface of the substrate, and a piezoelectric layer suspended over the first surface of the substrate by the one or more anchors. A first electrode may be provided on a first surface of the piezoelectric layer facing the first surface of the substrate, such that the first electrode is in contact with a first bimorph layer of the piezoelectric layer. A second electrode may be provided on a second surface of the piezoelectric layer opposite the first surface, such that the second electrode is in contact with a second bimorph layer of the piezoelectric layer.
摘要:
Methods of forming MEMS resonators containing a first structural material and a second structural material to tailor the resonator's temperature coefficient of frequency (TCF). The first structural material has a different Young's modulus temperature coefficient than the second structural material. In one embodiment, the first structural material may be formed on substrate and patterned, and the second structural material may be formed over the first structural material and planarized to expose the first structural material. A resonator may be patterned that contains both the first and second structural materials.
摘要:
Methods and apparatus for temperature control of devices and mechanical resonating structures are described. A mechanical resonating structure may include a heating element and a temperature sensor. The temperature sensor may sense the temperature of the mechanical resonating structure, and the heating element may be adjusted to provide a desired level of heating. Optionally, additional heating elements and/or temperature sensors may be included.