Abstract:
A variable capacitor includes an enclosure having first and second conductive collars separated by an intermediate electrically insulating element. A movable capacitor plate assembly is electrically coupled to the first conductive collar, and a fixed capacitor plate assembly is electrically coupled to the second conductive collar. An actuator extends into the enclosure for advancing and retracting the movable capacitor plate assembly relative to the fixed capacitor plate assembly. A hermetically sealed volume within the enclosure maintains a vacuum or a liquid serving as a dielectric between a capacitor plate of the movable capacitor plate assembly and a capacitor plate of the fixed capacitor plate assembly. At least one capacitor plate comprises a coiled cylindrical plate having a having a greater height at a center portion of the capacitor plate coil and a lower height at an outer portion of the capacitor plate coil.
Abstract:
The invention relates to compounds comprising a redox group, to the use thereof as an additive to an electrolyte composition, to an electrolyte composition including such an additive, and to electrochemical systems including such an electrolyte composition, in particular lithium or sodium batteries and supercapacitors having a double electric layer.
Abstract:
A variable capacitor, including: two movable plates, two poles, and one rotary shaft. The two movable plates are conductor belts, and the conductor belts are sheathed in insulators. The two poles are conductors, and each is capable of rotating around an axis thereof. First ends of the two movable plates are connected via the insulators and fixed on the rotary shaft, and second ends of the two movable plates are connected to the two poles, respectively. A conductor member of the two movable plates directly contacts the two poles. The lengths of the two movable plates are identical, and are greater than the distance from one pole to the rotary shaft.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming at least one fixed electrode on a substrate. The method further includes forming a Micro-Electro-Mechanical System (MEMS) beam with a varying width dimension, as viewed from a top of the MEMS beam, over the at least one fixed electrode.
Abstract:
A tunable filter design. The filter is implemented using transmission line sections as inductive and capacitive components. At least one capacitive component is a tunable capacitor. In some implementations, the tunable capacitor may be an interdigitated array of finger elements arranged so that the spacing between fingers may be adjusted. The design has a number of advantages including high capacitance for a given circuit area, small area for a given desired capacitance, mechanical stability, high self resonance frequency, and high quality factor.
Abstract:
A micro-electrical-mechanical systems (MEMS) device includes a substrate, one or more anchors formed on a first surface of the substrate, and a piezoelectric layer suspended over the first surface of the substrate by the one or more anchors. A first electrode may be provided on a first surface of the piezoelectric layer facing the first surface of the substrate, such that the first electrode is in contact with a first bimorph layer of the piezoelectric layer. A second electrode may be provided on a second surface of the piezoelectric layer opposite the first surface, such that the second electrode is in contact with a second bimorph layer of the piezoelectric layer.
Abstract:
According to one embodiment, an electronic device includes a MEMS element provided on an underlying region, and a protection film including a first layer, a second layer provided on the first layer, and a third layer provided on the second layer, the protection film covering the MEMS element and forming a cavity in an inside thereof. An outer periphery of the second layer is located inside an outer periphery of the cavity, as viewed in a direction perpendicular to a surface of the underlying region.
Abstract:
A tunable capacitor implemented as interdigitated arrays of finger elements arranged so that the spacing between finger arrays may be adjusted. The design has a number of advantages including high capacitance for a given circuit area, small area for a given desired capacitance, mechanical stability, high self resonance frequency, and high quality factor.
Abstract:
The present invention generally relates to a MEMS DVC having a shielding electrode structure between the RF electrode and one or more other electrodes that cause a plate to move. The shielding electrode structure may be grounded and, in essence, block or shield the RF electrode from the one or more electrodes that cause the plate to move. By shielding the RF electrode, coupling of the RF electrode to the one or more electrodes that cause the plate to move is reduced and capacitance modulation is reduced or even eliminated.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming at least one fixed electrode on a substrate. The method further includes forming a Micro-Electro-Mechanical System (MEMS) beam with a varying width dimension, as viewed from a top of the MEMS beam, over the at least one fixed electrode.