Abstract:
A particle beam device and a method for operation of a particle beam device are disclosed. The particle beam device has a sample chamber, a sample arranged in the sample chamber, a first particle beam column, a second particle beam column and at least one detector arranged in a first cavity in a first hollow body. The first cavity has a first inlet opening. The first particle beam column and the second particle beam column are arranged on one plane, while the detector is not arranged on that plane. At least one control electrode is arranged on the first particle beam column. The second particle beam column has a terminating electrode. A first hollow body voltage, a control electrode voltage and/or a terminating electrode voltage are/is chosen such that first interaction particles and/or second interaction particles enter the first cavity in the first hollow body through the first inlet opening.
Abstract:
System and method for charged particle beam. According an embodiment, the present invention provides a charged particle beam apparatus. The apparatus includes a charged particle source for generating a primary charged particle beam. The apparatus also includes at least one condenser lens for pre-focusing the primary charge particle beam. Furthermore, the apparatus includes a compound objective lens for forming the magnetic field and the electrostatic field to focus the primary charged particle beam onto a specimen in the charged particle beam path. The specimen includes a specimen surface. The compound objective lens includes a conical magnetic lens, an immersion magnetic lens, and an electrostatic lens, the conical magnetic lens including an upper pole piece, a shared pole piece being electrically insulated from the upper pole piece, and an excitation coil.
Abstract:
A particle optical arrangement providing an electron microscopy system 3 and an ion beam processing system 7 comprises an objective lens 43 of the electron microscopy system having an annular electrode 59 being a component of the electron microscopy system arranged closest to a position 11 of an object to be examined. Between the annular electrode and a principal axis 9 of the ion beam processing system 7 a shielding electrode 81 is arranged.
Abstract:
A method and system are presented for directing a charged particle beam towards and away from a sample. The system comprises a lens arrangement having an electrode formed with a beam opening for a charged particle beam passage therethrough; and a magnetic deflector. The magnetic deflector has a magnetic circuit formed by a core part for carrying excitation coils and a polepieces part. The polepieces of the magnetic deflector are in electrical communication with the electrode of the lens arrangement and are electrically insulated from the other part of the magnetic circuit.
Abstract:
The invention provides an optical system for a charged particle multi-beam system. The optical system comprises an electrostatic lens component and a magnetic lens component. The components are used to focus a plurality of charged particle beams in a separate opening for each of at least a plurality a charged particle beams traveling through the optical system.
Abstract:
A scanning electron microscope has an electron gun producing the electron beam, an objective lens for sharply focusing the beam onto the specimen, a tilting mechanism for tilting the specimen relative to the beam, and a power supply for applying the negative voltage to the specimen. This microscope further includes a cylindrical shield electrode mounted to surround the electron beam path between the objective lens and specimen. A front-end electrode is insulatively mounted to the front-end portion of the shield electrode that is on the specimen side. An electric potential substantially identical to the electric potential at the polepieces of the objective lens is applied to the shield electrode. An electric potential substantially identical to the potential at the specimen is applied to the front-end electrode.
Abstract:
The invention relates to a particle beam apparatus, in which very low target energies of the particles focused on the object can be set, with good imaging conditions. For this purpose, the beam guiding tube (5), from the anode (4) to behind the objective (6, 7) is at a high potential, which insures that the particles within the beam guiding tube have a high kinetic energy which is independent of the target energy. A braking electrode (9) arranged after the beam guiding tube, together with the object holder (10) and the object arranged thereon, is at a specimen potential UP which deviates from the ground potential and which has the same sign as the cathode potential UK. The specimen potential UP acts as the decelerating potential, by means of which the particles are braked to energies which can be below the energy value determined by the cathode potential UK. Thus even at the lowest target energies the object does not need to be brought to a high, high-voltage potential, so that object damage and high voltage flashovers are excluded. At the same time, the kinetic energy of the electrons within the beam guiding tube is largely independent of the target energy, so that the imaging relationships within the beam guiding tube are largely independent of the target energy.
Abstract:
The invention relates to a detector objective lens and a charged particle am device with such a detector objective lens containing a main lens for focussing a charged particle beam on a specimen, which consists of a magnetic lens (60) and an electrostatic lens (61) and a detector (62) disposed in front of the magnetic lens (60) in the direction of the charged particle beam (2) for detecting the charged particles released at the specimen (8). An additional lens is provided for influencing the released charged particles, which generates an electrostatic and/or magnetic field and is disposed between the main lens and the detector, the fields of the main lens and said additional lens being substantially separated from each other.
Abstract:
A scanning microscope is provided for producing a scan image at high spatial resolution and in a low acceleration voltage area. An acceleration tube is located in an electron beam path of an objective lens for applying a post-acceleration voltage of the primary electron beam. The application of an overlapping voltage onto a sample allows a retarding electric field against the primary electron beam to be formed between the acceleration tube and the sample. The secondary electrons generated from the sample and the secondary signals such as reflected electrons are extracted into the acceleration tube through the effect of an electric field (retarding electric field) immediately before the sample. The signals are detected by secondary signal detectors located upwardly than the acceleration tube.
Abstract:
An electrostatic-magnetic lens arrangement is for focusing charged particles as well as a charged particle beam device with such a lens arrangement which has a magnetic lens and an electrostatic lens incorporated into the magnetic lens, the magnetic lens being constructed as a single-pole lens.