Abstract:
The present disclosure provides a thin film transistor, a GOA circuit and an array substrate, the thin film transistor including a source electrode, including a source electrode wiring and a plurality of source electrode branches; a drain electrode, including a drain electrode wiring and a plurality of drain electrode branches; a gate; a semiconductor layer including a plurality of semiconductor branches; a plurality of source electrode branches. The plurality of drain electrode branches are in contact with the plurality of semiconductor branches and are divided into a plurality of cells; the source electrode wiring and the drain electrode wiring are arranged in a parallel and spaced apart, and the number m of one of the source electrode wiring and the drain electrode wiring is an integer greater than or equal to 2, and the number n of the other is an integer greater than or equal to 1.
Abstract:
The present application provides a micro-channel structure. The micro-channel structure includes a base substrate; a rail layer on the base substrate and including a first rail and a second rail spaced apart from each other; and a wall layer on a side of the rail layer distal to the base substrate, and including a first wall and a second wall at least partially spaced apart from each other, thereby forming a micro-channel between the first wall and the second wall. The micro-channel has an extension direction along a plane substantially parallel to a main surface of the base substrate, the extension direction being substantially parallel to extension directions of the first rail and the second rail along the plane substantially parallel to the main surface of the base substrate.
Abstract:
An oxide semiconductor composition for use in thin film transistors includes indium oxide, zinc oxide, and an oxide including a doping element of scandium, such as scandium oxide. A molar percentage of the indium oxide can be larger than approximately 50%. The oxide semiconductor composition can have a formula of In2Sc2ZnO7. Manufacturing of the oxide semiconductor composition can include: mixing indium oxide powder, scandium oxide powder, and zinc oxide powder to thereby obtain an oxide shaped object; and sintering the oxide shaped object to form the oxide semiconductor composition. A thin-film transistor for use in a semiconductor device, such as a display apparatus, can include the oxide semiconductor composition, and can thereby have improved mobility of the oxide semiconductor due to the reduced oxygen vacancy therein.
Abstract:
An oxide thin film transistor, an array substrate, and preparation methods thereof are disclosed. The method for preparing an oxide thin film transistor comprises a step of forming a pattern comprising an oxide semiconductor active layer on a substrate, wherein the step comprises: forming an amorphous oxide semiconductor thin film on the substrate; performing an excimer laser annealing, at least at a position in the amorphous oxide semiconductor thin film corresponding to a channel region of oxide semiconductor active layer to be formed, such that the amorphous oxide semiconductor material at the laser-annealed position is crystallized, to form a crystalline oxide semiconductor material; and forming the pattern comprising the oxide semiconductor active layer.
Abstract:
The present application discloses a thin film transistor including a base substrate; an active layer on the base substrate having a channel region, a source electrode contact region, and a drain electrode contact region; an etch stop layer on a side of the channel region distal to the base substrate covering the channel region; a source electrode on a side of the source electrode contact region distal to the base substrate; and a drain electrode on a side of the drain electrode contact region distal to the base substrate. A thickness of the active layer in the source electrode contact region and the drain electrode contact region is substantially the same as a combined thickness of the active layer in the channel region and the etch stop layer.
Abstract:
A method for fabricating an array substrate is disclosed. The method comprises: forming a first oxide semiconductor active layer of a first TFT in a GOA area of a substrate; performing a first annealing process on the first oxide semiconductor active layer at a first temperature; forming a first insulating layer which covers the first oxide semiconductor active layer; performing a second annealing process on the first oxide semiconductor active layer at a second temperature, wherein the second temperature is lower than the first temperature. This improves a forward bias stability of the first TFT and increases the device lifetime.
Abstract:
The present application discloses a thin film transistor including a base substrate; an active layer on the base substrate having a channel region, a source electrode contact region, and a drain electrode contact region; an etch stop layer on a side of the channel region distal to the base substrate covering the channel region; a source electrode on a side of the source electrode contact region distal to the base substrate; and a drain electrode on a side of the drain electrode contact region distal to the base substrate. A thickness of the active layer in the source electrode contact region and the drain electrode contact region is substantially the same as a combined thickness of the active layer in the channel region and the etch stop layer.
Abstract:
One embodiment of the present disclosure provides an array substrate, comprising: a gate line, a data line, and a common electrode layer electrically insulated from the gate line and the data line, wherein there is at least one overlapping area between the common electrode layer and the gate line, and/or, there is at least one overlapping area between the common electrode layer and the data line; moreover, the common electrode layer comprises a hollow structure part located in the at least one overlapping area, and the hollow structure part located in the overlapping area comprises at least one hollow area.
Abstract:
The present disclosure discloses an array substrate, comprising a substrate, a plurality of pixel regions on the substrate, and a thin-film transistor formed in each of the pixel regions, each of the pixel regions comprising a pixel electrode region, wherein, the thin-film transistor comprises a gate layer and a source/drain layer formed laminatedly on the substrate; the array substrate further comprises a flat layer and a reflective metal layer formed in sequence on the substrate and covering at least the pixel electrode region and the thin-film transistor; the reflective metal layer is electrically connected to a drain of the thin-film transistor; and at least one of the gate layer and the source/drain layer is formed of a single metal layer. The present disclosure further provides a method for manufacturing the array substrate and a totally reflective type liquid crystal display comprising the array substrate.
Abstract:
The invention belongs to the field of display technology, and particularly provides an array substrate and a method for manufacturing the same, and a display device. The array substrate includes a base substrate, and a thin film transistor and driving electrodes provided on the base substrate, the thin film transistor includes a gate, a gate insulating layer, an active layer, a source and a drain, the driving electrodes include a slit-shaped electrode and a plate-shaped electrode which are located in different layers and at least partially overlap with each other in the orthographic projection direction, the source, the drain and the active layer are formed so that part of their bottom surfaces are located in the same plane, and a resin layer is further provided between the thin film transistor and the plate-shaped electrode.