Abstract:
The present disclosure relates to the field of display technology, and provides a display substrate, its manufacturing method, and a display device. The display substrate includes a display region and a GOA region. An active layer of a TFT at the GOA region at least includes a first oxide semiconductor layer and a second oxide semiconductor layer arranged on the first oxide semiconductor layer, and the first oxide semiconductor layer is arranged between the second oxide semiconductor layer and a base substrate of the display substrate and has a carrier mobility of smaller than the second oxide semiconductor layer.
Abstract:
The present disclosure provides a transistor, an array substrate and a method of manufacturing the array substrate, and a display device. The method of manufacturing the array substrate comprises: depositing a plurality of silicon oxide layers on an active layer of a transistor; and depositing a silicon oxynitride layer over the plurality of silicon oxide layers.
Abstract:
An optical detector includes a stacked structure, an active layer, a gate insulating layer, and a gate electrode. The stacked structure includes a first electrode, a photoelectric conversion layer, a second electrode, a first insulating layer, and a third electrode. The active layer is electrically coupled to one of the first electrode or the second electrode, and electrically coupled to the third electrode. The gate insulating layer is arranged on the active layer. The gate electrode is arranged on the gate insulating layer.
Abstract:
An array substrate, a manufacturing method thereof and a display device are disclosed. The array substrate comprises a plurality of pixel unit regions each including a thin-film transistor (TFTs) and a pixel electrode. A first insulating layer provided with a first through hole and a second through hole is formed between an active layer of the TFT and the pixel electrode. A source electrode of the TFT is connected with the active layer through the first through hole. A drain electrode of the TFT is lapped onto the pixel electrode and connected with the active layer through the second through hole. The array substrate can prevent the oxidization of metal such as copper in the process of patterning a transparent conductive film.
Abstract:
A thin film transistor and a fabrication method thereof, and a display device are provided. The thin film transistor comprises an active layer, wherein, a target oxide is formed at a portion of the active layer where an oxygen content is higher than oxygen contents of other portions of the active layer, and a carrier mobility of the target oxide is greater than that of other portions of the active layer.
Abstract:
A touch organic light emitting diode (OLED) display device, including: a thin film transistor formed on one side of a substrate, a touch signal feedback layer formed on the thin film transistor, a luminous substrate provided on the touch signal feedback layer, and a touch signal receiving layer formed on the other side of the substrate. An anode layer of the luminous substrate is connected to a drain electrode of the thin film transistor. As to the touch-sensitive OLED display device, a touch screen and an OLED display portion are prepared integratedly, so that the weight and thickness of the display itself are greatly reduced, and the production cost is saved. A manufacturing method of the touch-sensitive OLED display device is further disclosed.
Abstract:
The present disclosure relates to a thin-film transistor, a method for preparing the same, and a display substrate. The method for preparing the thin-film transistor includes the steps of forming a source electrode, a drain electrode, and an active layer, in which the step of forming the source electrode, the drain electrode, and the active layer includes: forming a first thin film from a first metal oxide material in an atmosphere of a first oxygen content; and forming a second thin film from a second metal oxide material in an atmosphere of a second oxygen content, in which the first thin film is configured to form the active layer, the second thin film is configured to form a source electrode and a drain electrode, and the second oxygen content is less than the first oxygen content.
Abstract:
An oxide semiconductor composition for use in thin film transistors includes indium oxide, zinc oxide, and an oxide including a doping element of scandium, such as scandium oxide. A molar percentage of the indium oxide can be larger than approximately 50%. The oxide semiconductor composition can have a formula of In2Sc2ZnO7. Manufacturing of the oxide semiconductor composition can include: mixing indium oxide powder, scandium oxide powder, and zinc oxide powder to thereby obtain an oxide shaped object; and sintering the oxide shaped object to form the oxide semiconductor composition. A thin-film transistor for use in a semiconductor device, such as a display apparatus, can include the oxide semiconductor composition, and can thereby have improved mobility of the oxide semiconductor due to the reduced oxygen vacancy therein.
Abstract:
The present invention relates to the field of display technology, and particularly to a double-sided touch display device which comprises a touch feedback electrode, a first touch receiving electrode and a second touch receiving electrode, wherein the first touch receiving electrode and the second touch receiving electrode are provided at both sides of the touch feedback electrode, respectively. The double-sided touch display device achieve functions of both double-sided touch and transparent display, and has a simple structure and low production cost.
Abstract:
A thin film transistor and a fabrication method thereof, and a display device are provided. The thin film transistor comprises an active layer, wherein, a target oxide is formed at a portion of the active layer where an oxygen content is higher than oxygen contents of other portions of the active layer, and a carrier mobility of the target oxide is greater than that of other portions of the active layer.