摘要:
Method of forming micro channels in a polymeric nanocomposite film is provided. The method includes combining one or more monomers to form a mixture and adding a plurality of carbon fibers with metal nanoparticles dispersed therein to the mixture prior to or concurrently with formation of a polymer from the monomers. The method also includes adding at least one hydrophobic agent and at least one plasticizer to the polymer to form the polymeric nanocomposite film and forming a plurality of laser-etched micro channels in a surface of the polymeric nanocomposite film.
摘要:
The purpose of the present invention is to provide a catalyst for exhaust gas purification, which is capable of effectively processing an exhaust gas, particularly carbon monoxide (CO) and hydrocarbon (HC) in the exhaust gas at a low temperature, and a method for producing the catalyst for exhaust gas purification. The purpose is achieved by a catalyst for exhaust gas purification, which is obtained by having a carrier that contains Al2O3 and one or more metal oxides selected from the group consisting of zirconium oxide (ZrO2), cerium oxide (CeO2), yttrium oxide (Y2O3), neodymium oxide (Nd2O3), silicon oxide (SiO2) and titanium oxide (TiO2) support one or more catalyst components selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru) and osmium (Os). The metal oxides have particle diameters of less than 10 nm.
摘要翻译:本发明的目的是提供一种排气净化用催化剂,其能够在低温下有效地处理排气中的废气,特别是一氧化碳(CO)和烃(HC) 生产废气净化催化剂。 其目的是通过具有含有Al 2 O 3的载体和选自氧化锆(ZrO 2),氧化铈(CeO 2),氧化钇(Y 2 O 3)等的一种以上的金属氧化物而得到的废气净化用催化剂实现。 ),氧化钕(Nd 2 O 3),氧化硅(SiO 2)和氧化钛(TiO 2)支持一种或多种选自金(Au),银(Ag),铂(Pt),钯(Pd) ,铑(Rh),铱(Ir),钌(Ru)和锇(Os)。 金属氧化物的粒径小于10nm。
摘要:
Catalytic materials with high activity in various chemical reactions as well as high durability are described. The catalytic materials are composed of specific, hybrid combinations of inorganic/polymeric compounds containing metal nano-particles therein, and can be easily reused with negligible catalysts leaching. They are particularly useful, but not limited to, the hydrogenation of substituted α,β unsaturated acids or esters.
摘要:
The present invention is related to a method of producing nano-composites, which has the following steps: providing a solution, the solution has a substrate and a precursor of a zero-dimensional nanoparticles; subjecting a surface of the solution to a plasma to activate the precursor to generate the zero-dimensional nanoparticles in the solution; whereby the nanoparticles are self-assembled on the substrate uniformly to generate the nano-composites.
摘要:
A non-aqueous metal catalytic composition includes: (a) a silver complex comprising reducible silver ions, (b) a silver ion photoreducing composition, (c) a photocurable component, non-curable polymer, or combination of a photocurable component and a non-curable polymer, and (d) nanoparticles of a semi-conducting metal oxide in an amount of at least 0.1 weight %. This composition can be disposed on a substrate, uniformly or in a patternwise fashion. The composition can be dried and then exposed to suitable radiation to reduce the reducible silver ions to silver particles that can then be electrolessly plated with a metal to provide an electrically-conductive article.
摘要:
A method of and apparatus for efficient on-demand production of H2 and O2 from water and heat using environmentally safe metals are disclosed. In one aspect, the apparatus for the hydrogen generation through water decomposition reaction includes a main reactor, an oxidizer reactor, and a computer controlling system. The main reactor contains a hydrogen generating substance, such as aluminium hydroxide. In some embodiments, the main reactor includes hydroxide shuttles, such as Cu ion and Ag ion. In another aspect, the system for hydrogen generation through water decomposition includes the steps of (1) REDOX reaction, (2) pre-generation reaction, (3) generation reaction, (4) regeneration reaction, (5) second hydrogen reaction, and (6) oxygen reaction.
摘要:
A composition includes a templated metal oxide substrate having a plurality of pores and a catalyst material includes silver. The composition under H2 at 30 degrees Celsius, the composition at a wavelength that is in a range of from about 350 nm to about 500 nm has a VIS-UV absorbance intensity that is at least 20 percent less than a standard silver alumina catalyst (Ag STD). The standard alumina is Norton alumina, and which has the same amount of silver by weight.
摘要:
Zero-valent silver compositions include 4-dimethylaminopyridine as stabilizers. The zero-valent silver and the 4-diemthylaminopyridine form stabilized nano-particles in solution. The zero-valent silver compositions may be used as catalysts in the metallization of non-conductive substrates.
摘要:
An exhaust gas purifying catalyst includes: a support that contains at least one element that is selected from the first group that consists of Al, Zr and Ce, at least one element that is selected from the second group that consists of Ag, Mn, Co, Cu and Fe, and Ti; and particles that are composed of a metal or oxide of at least one element that is selected from the third group that consists of Ag, Mn, Co, Cu and Fe and that are deposited on the support. Seventy percent or more of any plurality of measurement points with a diameter of 2 nm on a surface of the support are composed of a composite part that has the at least one element selected from the second group content of 0.5 to 10 mol % and has a Ti content of 0.3 mol % or greater.
摘要:
A non-aqueous metal catalytic composition includes (a) a complex of silver and an oxime comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component, a non-curable polymer, or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.