Abstract:
An ion beam angle calibration and emittance measurement system, comprising a plate comprising an elongated slit therein, wherein the elongated slit positioned at a rotation center of the plate and configured to allow a first beam portion to pass therethrough. A beam current detector located downstream of the plate, wherein the beam current detector comprises a slit therein configured to permit a second beam portion of the first beam portion to pass therethrough, wherein the beam current detector is configured to measure a first beam current associated with the first beam portion. A beam angle detector is located downstream of the beam current detector and configured to detect a second beam current associated with the second beam portion. The plate, the current beam detector and the beam angle detector are configured to collectively rotate about the rotation center of the plate.
Abstract:
Non-elliptical ion beams and plumes of sputtered material can yield a relatively uniform wear pattern on a destination target and a uniform deposition of sputtered material on a substrate assembly. The non-elliptical ion beams and plumes of sputtered material impinge on rotating destination targets and substrate assemblies. A first example ion beam grid and a second example ion beam grid each have patterns of holes with an offset between corresponding holes. The quantity and direction of offset determines the quantity and direction of steering individual beamlets passing through corresponding holes in the first and second ion beam grids. The beamlet steering as a whole creates a non-elliptical current density distribution within a cross-section of an ion beam and generates a sputtered material plume that deposits a uniform distribution of sputtered material onto a rotating substrate assembly.
Abstract:
A system and method for removing an organic residue from a charged particle beam system includes a conduit that is coupled to the column and is for adding oxygen to the column. A heater is coupled to the column and is for increasing the temperature in the column. A pump is coupled to the column and is for removing a gas from the chamber, wherein the gas is a byproduct of a chemical reaction of the organic residue and the oxygen.
Abstract:
An ion source includes an arc chamber housing defining an arc chamber having an extraction aperture, and a wiper assembly comprising a wiper positioned outside the arc chamber in a parked position and configured to be driven from the parked position to operational positions to clean the extraction aperture. A wiper assembly for an ion source includes a wiper configured to be positioned outside an arc chamber of the ion source when in a parked position and driven from the parked position to operational positions to clean an extraction aperture of the ion source.
Abstract:
A substrate plasma-processing apparatus for plasma-processing a surface of an electrode of an organic light emitting device. The substrate plasma-processing apparatus may adjust the distance between a first electrode and a substrate and adjust the distance between a second electrode and the substrate.
Abstract:
An electrode assembly for use with an ion source chamber or as part of an ion implanter processing system to provide a uniform ion beam profile. The electrode assembly includes an electrode having an extraction slot with length L aligned with an aperture of the ion source chamber for extracting an ion beam. The electrode includes a plurality of segments partitioned within the length of the extraction slot where each of the segments is configured to be displaced in at least one direction with respect to the ion beam. A plurality of actuators are connected to the plurality of electrode segments for displacing one or more of the segments. By displacing at least one of the plurality of electrode segments, the current density of a portion of the ion beam corresponding to the position of the segment within the extraction slot is modified to provide a uniform current density beam profile associated with the extracted ion beam.
Abstract:
An ultra low-k dielectric material layer is formed on a semiconductor substrate. In one embodiment, a grid of wires is placed at a distance above a top surface of the ultra low-k dielectric material layer and is electrically biased such that the total electron emission coefficient becomes 1.0 at the energy of electrons employed in electron beam curing of the ultra low-k dielectric material layer. In another embodiment, a polymeric conductive layer is formed directly on the ultra low-k dielectric material layer and is electrically biased so that the total electron emission coefficient becomes 1.0 at the energy of electrons employed in electron beam curing of the ultra low-k dielectric material layer. By maintaining the total electron emission coefficient at 1.0, charging of the substrate is avoided, thus protecting any device on the substrate from any adverse changes in electrical characteristics.
Abstract:
A workpiece or semiconductor wafer is tilted as a ribbon beam is swept up and/or down the workpiece. In so doing, the implant angle or the angle of the ion beam relative to the workpiece remains substantially constant across the wafer. This allows devices to be formed substantially consistently on the wafer. Resolving plates move with the beam as the beam is scanned up and/or down. This allows desired ions to impinge on the wafer, but blocks undesirable contaminants.
Abstract:
Techniques for reducing contamination during ion implantation is disclosed. In one particular exemplary embodiment, the techniques may be realized by an apparatus for reducing contamination during ion implantation. The apparatus may comprise a platen to hold a workpiece for ion implantation by an ion beam. The apparatus may also comprise a mask, located in front of the platen, to block the ion beam and at least a portion of contamination ions from reaching a first portion of the workpiece during ion implantation of a second portion of the workpiece. The apparatus may further comprise a control mechanism, coupled to the platen, to reposition the workpiece to expose the first portion of the workpiece for ion implantation.
Abstract:
An ion-implanting apparatus and method can dynamically control a beam current value with time and does not change energy. This ion-implanting apparatus controls a dynamic change in beam current value with time by giving feedback on the beam current value measured with a beam current measuring device.