摘要:
A semiconductor device having five gate stacks on different regions of a substrate and methods of making the same are described. The device includes a semiconductor substrate and isolation features to separate the different regions on the substrate. The different regions include a p-type field-effect transistor (pFET) core region, an input/output pFET (pFET IO) region, an n-type field-effect transistor (nFET) core region, an input/output nFET (nFET IO) region, and a high-resistor region.
摘要:
A device includes a wafer substrate, a conical frustum structure formed in the wafer substrate, and a gate all-around (GAA) structure circumscribing the middle portion of the conical frustum structure. The conical frustum structure includes a drain formed at a bottom portion of the conical frustum, a source formed at a top portion of the vertical conical frustum, and a channel formed at a middle portion of the conical frustum connecting the source and the drain. The GAA structure overlaps with the source at one side of the GAA structure, crosses over the channel, and overlaps with the drain at another side of the GAA structure.
摘要:
An integrated circuit device and methods of manufacturing the same are disclosed. In an example, integrated circuit device includes a capacitor having a doped region disposed in a semiconductor substrate, a dielectric layer disposed over the doped region, and an electrode disposed over the dielectric layer. At least one post feature embedded in the electrode.
摘要:
Storage using resemblance of data segments is disclosed. It is determined that a new segment resembles a second prior stored segment wherein the second prior stored segment is represented as a first stored delta and a first prior stored segment. A second delta between the new segment and the prior stored segment is determined. A representation of the new segment based at least in part on the second delta is stored.
摘要:
Compositions, pharmaceutical preparations and methods are disclosed for protecting non-neoplastic cells from damage caused by cancer chemotherapeutic agents or radiation therapy, during the course of cancer therapy or bone marrow transplant. These are based on the use of chemoprotective inducing agents that induce or increase production of cellular detoxification enzymes in target cell populations. The compositions and methods are useful to reduce or prevent hair loss, gastrointestinal distress and lesions of the skin and oral mucosa that commonly occur in patients undergoing cancer therapy. Also disclosed is a novel assay system for identifying new chemoprotective inducing agents.
摘要:
A technique is described providing offline support to business applications. Offline support allows a business application running on a portable electronic device without connectivity to a backend server to operate as though the business application has access to a backend server. The technique receives a client request to operate the application in an offline mode. The technique then retrieves a business object to be utilized in the offline mode and an event trigger for interacting with the business object. The native programming language is then determined and then an event handler written in a native language of the client device and that is associated with the event trigger is retrieved. The event trigger is then modified to point to the event handler. The business object, event trigger, and event handler are then packaged together.
摘要:
A method for forming a field-effect transistor with a raised drain structure is disclosed. The method includes forming a frustoconical source by etching a semiconductor substrate, the frustoconical source protruding above a planar surface of the semiconductor substrate; forming a transistor gate, a first portion of the transistor gate surrounding a portion of the frustoconical source and a second portion of the gate configured to couple to a first electrical contact; and forming a drain having a raised portion configured to couple to a second electrical contact and located at a same level above the planar surface of the semiconductor substrate as the second portion of the transistor gate. A semiconductor device having a raised drain structure is also disclosed.
摘要:
A device includes a wafer substrate, a conical frustum structure formed in the wafer substrate, and a gate all-around (GAA) structure circumscribing the middle portion of the conical frustum structure. The conical frustum structure includes a drain formed at a bottom portion of the conical frustum, a source formed at a top portion of the vertical conical frustum, and a channel formed at a middle portion of the conical frustum connecting the source and the drain. The GAA structure overlaps with the source at one side of the GAA structure, crosses over the channel, and overlaps with the drain at another side of the GAA structure.
摘要:
The present disclosure provides an integrated circuit. The integrated circuit includes a semiconductor substrate; a n-type filed effect transistor (nFET) formed on the semiconductor substrate and having a first gate stack including a high k dielectric layer, a capping layer on the high k dielectric layer, a p work function metal on the capping layer, and a polysilicon layer on the p work function metal; and a p-type filed effect transistor (pFET) formed on the semiconductor substrate and having a second gate stack including the high k dielectric layer, the p work function metal on the high k dielectric layer, and a metal material on the p work function metal.
摘要:
The present disclosure provides a method of fabricating a semiconductor device. A high-k dielectric layer is formed over a substrate. A first capping layer is formed over a portion of the high-k dielectric layer. A second capping layer is formed over the first capping layer and the high-k dielectric layer. A dummy gate electrode layer is formed over the second capping layer. The dummy gate electrode layer, the second capping layer, the first capping layer, and the high-k dielectric layer are patterned to form an NMOS gate and a PMOS gate. The NMOS gate includes the first capping layer, and the PMOS gate is free of the first capping layer. The dummy gate electrode layer of the PMOS gate is removed, thereby exposing the second capping layer of the PMOS gate. The second capping layer of the PMOS gate is transformed into a third capping layer.