Abstract:
A semiconductor device includes a semiconductor region, a source region, a drain region, a source extension region a drain extension region, a first gate insulation film, a second gate insulation film, and a gate electrode. The source region, drain region, source extension region and drain extension region are formed in a surface portion of the semiconductor region. The first gate insulation film is formed on the semiconductor region between the source extension region and the drain extension region. The first gate insulation film is formed of a silicon oxide film or a silicon oxynitride film having a nitrogen concentration of 15 atomic % or less. The second gate insulation film is formed on the first gate insulation film and contains nitrogen at a concentration of between 20 atomic % and 57 atomic %. The gate electrode is formed on the second gate insulation film.
Abstract:
A semiconductor device includes a semiconductor region, a source region, a drain region, a source extension region a drain extension region, a first gate insulation film, a second gate insulation film, and a gate electrode. The source region, drain region, source extension region and drain extension region are formed in a surface portion of the semiconductor region. The first gate insulation film is formed on the semiconductor region between the source extension region and the drain extension region. The first gate insulation film is formed of a silicon oxide film or a silicon oxynitride film having a nitrogen concentration of 15 atomic % or less. The second gate insulation film is formed on the first gate insulation film and contains nitrogen at a concentration of between 20 atomic % and 57 atomic %. The gate electrode is formed on the second gate insulation film.
Abstract:
A semiconductor device includes an isolation region, a semiconductor element region defined by the isolation region, and having a channel forming portion and a recessed portion, the recessed portion being formed between the isolation region and the channel forming portion, and an epitaxial semiconductor portion formed in the recessed portion, wherein the semiconductor element region has a wall portion between the isolation region and the epitaxial semiconductor portion.
Abstract:
Disclosed is a method of manufacturing a semiconductor device, comprising forming a metal compound film directly or indirectly on a semiconductor substrate, forming a metal-containing insulating film consisting of a metal oxide film or a metal silicate film by oxidizing the metal compound film, and forming an electrode on the metal-containing insulating film.
Abstract:
Preparing a stencil mask comprising a silicon thin film in which an opening for selectively irradiating charged particles to a semiconductor substrate is provided and whose irradiation surface on which the charged particles are irradiated is implanted with an impurity, and selectively irradiating charged particles to the semiconductor substrate using the stencil mask which is opposingly arranged on the semiconductor substrate.
Abstract:
In a method of manufacturing a sensor, firstly, a plate-type detection element is inserted through an element-insertion through-hole of a first powder-compacted ring. Secondly, a flange section including at least the first powder-compacted ring is integrally assembled to the plate-type detection element, applying axially compressive pressure to the first powder-compacted ring so as to compressively deform the first powder-compacted ring such that the cross-sectional area of the element-insertion through-hole is reduced. Thirdly, the flange section is engaged, directly or via an intermediate member, with the stepped portion of the metallic shell at the time of disposing of the plate-type detection element in the through-hole of the metallic shell. A sensor prepared by the method is also disclosed.
Abstract:
There is provided a semiconductor device including a substrate, a device isolation insulating film formed on the substrate, a gate electrode formed on the substrate, a gate wiring layer formed in the device isolation insulating film and connected to the gate electrode, source and drain electrodes arranged on the substrate to face each other via the gate electrode, and an insulating film covering bottom and side surfaces of each of the gate electrode and the gate wiring layer, wherein the gate, source and drain electrodes and gate wiring layer have upper surface levels equal to or lower than that of the device isolation insulating film.
Abstract:
Preparing a stencil mask comprising a silicon thin film in which an opening for selectively irradiating charged particles to a semiconductor substrate is provided and whose irradiation surface on which the charged particles are irradiated is implanted with an impurity, and selectively irradiating charged particles to the semiconductor substrate using the stencil mask which is opposingly arranged on the semiconductor substrate.
Abstract:
A method for annealing a semiconductor substrate by light irradiation, includes depositing a translucent film with a predetermined thickness on a semiconductor substrate. The translucent film has a refractive index that is smaller than that of the semiconductor substrate. The thickness is defined by a peak wavelength of the light and the refractive index of the translucent film. The semiconductor substrate is heated in a temperature range of about 300° C. to about 600° C. A surface of the semiconductor substrate is heated with the light which has a pulse width of about 0.1 ms to about 100 ms.
Abstract:
A semiconductor device comprises an n-type MIS transistor comprising a first gate insulating film and a first gate electrode including an MSix film formed on the first gate insulating film, where M represents a metal element selected from tungsten and molybdenum and x is greater than 1, i.e., x>1; and a p-type MIS transistor comprising a second gate insulating film and a second gate electrode including an MSiy film formed on the second gate insulating film, where y is not less than 0 and less than 1, i.e., 0≦y
Abstract translation:半导体器件包括n型MIS晶体管,其包括第一栅极绝缘膜和第一栅电极,所述第一栅极包括形成在第一栅极绝缘膜上的MSi膜,其中M表示选自钨的金属元素 钼和x大于1,即x> 1; 以及p型MIS晶体管,其包括第二栅极绝缘膜和第二栅电极,所述第二栅电极包括形成在所述第二栅极绝缘膜上的MSi膜,其中y不小于0且小于1, 即0 <= y <1。