Abstract:
Provided is a programmable logic device that includes logic elements arranged in a plurality of columns. Wirings connecting logic elements are arranged between the plurality of columns. Switch circuits that control electrical connections between the wirings and the logic elements are also arranged between the plurality of columns. Each of the switch circuit selects an electrical connection between one of the wirings and an input terminal of one of the logic elements in accordance with configuration data.
Abstract:
Integrated circuits are provided that have volatile memory elements. The memory elements produce output signals. The integrated circuits may be programmable logic device integrated circuits containing programmable core logic including transistors with gates. The core logic is powered using a core logic power supply level defined by a core logic positive power supply voltage and a core logic ground voltage. When loaded with configuration data, the memory elements produce output signals that are applied to the gates of the transistors in the core logic to customize the programmable logic device. The memory elements are powered with a memory element power supply level defined by a memory element positive power supply voltage and a memory element ground power supply voltage. The memory element power supply level is elevated with respect to the core logic power supply level.
Abstract:
Integrated circuits with sequential logic circuitry are provided. Sequential logic circuitry may include a chain of bypassable clocked storage elements coupled between a speed critical input terminal and a speed critical output terminal. Combinational logic circuits may be interposed between each adjacent pair of bypassable clocked storage elements in the chain. Dynamic voltage-frequency scaling (DVFS) control circuitry may provide an adjustable power supply voltage to the combinational logic circuits and may provide an adjustable clock signal to control the clocked storage elements. The DVFS control circuitry may be used to selectively enable at least some of the bypassable clocked storage elements while disabling other bypassable clocked storage elements so that the power supply voltage can be reduced while maintaining the same operating frequency. The power supply voltage and the frequency of the clock signal can be adjusted to provide the desired voltage-frequency tradeoff.
Abstract:
An apparatus and method for correcting an output signal of an FPGA-based memory test device includes a clock generator for outputting clock signals having different phases; and a pattern generator for outputting an address signal, a data signal and a clock signal in response to the clock signals input from the clock generator, and correcting a timing of each of the output signals using flip flops for timing measurement. Wherein the address signal, the data signal and the clock signal, through a pattern generator, are implemented with a programmable logic such as FPGA, thereby shortening the correcting time without the use of an external delay device, and increasing accuracy of output timing of the signal for memory testing, ultimately enhancing performance (accuracy) of a memory tester.
Abstract:
According to one embodiment, a semiconductor integrated circuit includes nonvolatile memory areas, each includes a first nonvolatile memory transistor, a second nonvolatile memory transistor and an output line, the first nonvolatile memory transistor includes a first source diffusion region, a first drain diffusion region and a first control gate electrode, the second nonvolatile memory transistor includes a second source diffusion region, a second drain diffusion region and a second control gate electrode, the output line connected the first drain diffusion region and the second drain diffusion region, and logic transistor areas, each includes a logic transistor, the logic transistor includes a third source diffusion region, a third drain diffusion region and a first gate electrode.
Abstract:
According to one embodiment, a semiconductor integrated circuit includes nonvolatile memory areas, each includes a first nonvolatile memory transistor, a second nonvolatile memory transistor and an output line, the first nonvolatile memory transistor includes a first source diffusion region, a first drain diffusion region and a first control gate electrode, the second nonvolatile memory transistor includes a second source diffusion region, a second drain diffusion region and a second control gate electrode, the output line connected the first drain diffusion region and the second drain diffusion region, and logic transistor areas, each includes a logic transistor, the logic transistor includes a third source diffusion region, a third drain diffusion region and a first gate electrode.
Abstract:
The invention relates to an electronic device, comprising a field effect transistor and a resistive switch electrically coupled with each other, wherein the resistive switch is configured to be switched between a state of low resistance and a state of high resistance.
Abstract:
A programmable integrated circuit is disclosed. The programmable integrated circuit comprises a matrix of circuit blocks, each circuit block of the matrix of circuit blocks comprising configurable blocks; and a routing network coupled to the matrix of circuit blocks, the routing network having a plurality of programmable interconnect points comprising buffers enabling asynchronous communication. A method of asynchronously routing data in an integrated circuit is also disclosed.
Abstract:
Integrated circuits are provided that have volatile memory elements. The memory elements produce output signals. The integrated circuits may be programmable logic device integrated circuits containing programmable core logic including transistors with gates. The core logic is powered using a core logic power supply level defined by a core logic positive power supply voltage and a core logic ground voltage. When loaded with configuration data, the memory elements produce output signals that are applied to the gates of the transistors in the core logic to customize the programmable logic device. The memory elements are powered with a memory element power supply level defined by a memory element positive power supply voltage and a memory element ground power supply voltage. The memory element power supply level is elevated with respect to the core logic power supply level.
Abstract:
Provided is a programmable logic block of a field-programmable gate array (FPGA). The programmable logic block includes a pull-up access transistor connected to a power source, an up-phase-change memory device connected to the pull-up access transistor, a down-phase-change memory device connected to the up-phase-change memory device, an output terminal between the up-phase-change memory device and the down-phase-change memory device, and a pull-down access transistor connected to the down-phase-change memory device and a ground. The resistance values of the up-phase-change memory device and the down-phase-change memory device are individually programmed.