摘要:
The disclosure relates to a method and a system for the isolation of picoliter droplets from a continuous stream of carrier fluid in a microfluidic system. In particular the disclosure relates to a system that comprises a sorter, a detector and a collector. The sorter serves for a selection of picoliter droplets with a desired content based upon an optical signal obtained from the picoliter droplets. The selected picoliter droplets are guided towards the detector that comprises a detection channel that is arranged perpendicular to a light beam. By means of a photodetector that is aligned with the optical axis of the light beam the passage of the picoliter droplets can be detected. The collector comprises multiple wells and the detection of the passage of the picoliter droplets results in a relative movement of the detector and a collector such that the picoliter droplet is isolated by depositing it into one of said wells. The disclosure moreover relates to a method that uses such a system to isolate individual picoliter droplets. In particular the disclosure relates to a method that allows for an analysis and/or further processing of the content of the picoliter droplets that have been isolated from a microfluidic system by depositing them into a well.
摘要:
The present invention relates to a system and method for moving samples, such as fluid, within a microfluidic system using a plurality of gas actuators for applying pressure at different locations within the microfluidic. The system includes a substrate which forms a fluid network through which fluid flows, and a plurality of gas actuators integral with the substrate. One such gas actuator is coupled to the network at a first location for providing gas pressure to move a microfluidic sample within the network. Another gas actuator is coupled to the network at a second location for providing gas pressure to further move at least a portion of the microfluidic sample within the network. A valve is coupled to the microfluidic network so that, when the valve is closed, it substantially isolates the second gas actuator from the first gas actuator.
摘要:
This disclosure provides systems, methods, and devices for processing samples on a microfluidic device. One system includes a microfluidic device having an upstream channel, a DNA manipulation zone located downstream from the upstream channel and configured to perform PCR amplification of a sample, a first valve disposed upstream of the DNA manipulation zone, and a second valve disposed downstream of the DNA manipulation zone. The system also includes a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the DNA manipulation zone, and a computer-controlled heat source in thermal contact with the DNA manipulation zone.
摘要:
An apparatus and method for delivering repetitive, precision, low volume liquid dispensing from a dispensing orifice of a non-contact liquid dispensing apparatus. An elongated communication passageway of the dispensing apparatus is defined by interior walls having one end in fluid communication with a system fluid reservoir and an opposite end terminating at the dispensing orifice. A system fluid is placed in the communication passageway extending substantially continuously from the system fluid reservoir to the dispensing orifice. A relatively small volume of gaseous fluid is aspirated through the dispensing orifice, and into the communication passageway in a manner such that the gaseous fluid extends substantially continuously across the transverse cross-sectional dimension of the communication passageway. Subsequently, a dispensing liquid is aspirated through the dispensing orifice and into the communication passageway in a manner such that the relatively small volume of aspirated gaseous fluid forms a minute, unitary air gap fully enclosed between the interior walls of the communication passageway and a liquid interface between the system fluid and the dispensing liquid contained in the communication passageway. This minute air gap substantially prevents dispersion and dilution therebetween at the liquid interface. To effect dispensing, a rapid pressure pulse with a predetermined pulse width is applied to the system fluid upstream from the minute air gap, causing the pressure pulse to traverse the minute air gap to the dispensing liquid without substantial fluid compression of the minute air gap. This enables substantially accurate, relatively small volume, non-contact liquid dispensing of the dispensing liquid from the dispensing orifice.
摘要:
A device for parallel metering of a liquid with the following features: the device has a first body; the first body has a main channel, secondary channels, one inlet and outlets; the main channel is connected to the inlet; the secondary channels are connected to one outlet at a time; the secondary channels are connected to the main channel; the device has at least one first chamber with a first pressure medium; the first body has means for transferring transfer means pressure surges of the pressure medium from a first chamber to the secondary channels; each transfer means is connected to a secondary channel; and at least one means for preventing a fluidic connection between the secondary channels and the chamber is assigned to the transfer means.
摘要:
Improved microfluidic devices, systems, and methods allow selective transportation of fluids within microfluidic channels of a microfluidic network by applying, controlling, and varying pressures at a plurality of reservoirs. Modeling the microfluidic network as a series of nodes connected together by channel segments and determining the flow resistance characteristics of the channel segments may allow calculation of fluid flows through the channel segments resulting from a given pressure configuration at the reservoirs. To effect a desired flow within a particular channel or series of channels, reservoir pressures may be identified using the network model. Viscometers or other flow sensors may measure flow characteristics within the channels, and the measured flow characteristics can be used to calculate pressures to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems can optionally be used in conjunction with electrokinetic or other fluid transport mechanisms.
摘要:
Device for parallel metering of a liquid with the following features: the device has a first body (20a, 20b); the first body (20a, 20b) has a main channel (8), secondary channels (9, 10, 11, 12), one inlet (1) and outlets (6); the main channel (8) is connected to the inlet (1); the secondary channels (9, 10, 111, 12) are connected to one outlet at a time; the secondary channels (9, 10, 11, 12) are connected to the main channel (8); the device has at least one first chamber with a first pressure medium; the first body (20a, 20b) has means for transferring (transfer means 2) pressure surges of the pressure medium from a first chamber to the secondary channels; each transfer means (2) is connected to a secondary channel (9, 10, 11, 12); at least one means (21) for preventing a fluidic connection between the secondary channels (9, 10, 11, 12) and the chamber is assigned to the transfer means (2).
摘要:
Microfluidic devices, systems, and methods measure viscosity, flow times, and/or other flow characteristics within the channels, and the measured flow characteristics can be used to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems, electrokinetic systems and/or other fluid transport mechanisms can generate the flow, controllably mix fluids, and the like.