摘要:
A method and system for an acoustic wave band reject filter are disclosed. According to one aspect, an acoustic wave band reject filter includes a substrate and a plurality of acoustic wave band reject filter blocks. The substrate includes bonding pads formed on the substrate. Each one of the plurality of acoustic wave band reject filter blocks is fixed on a separate die. Each separate die has solder balls on a side of the die facing the substrate. The solder balls are positioned to electrically connect the bonding pads formed on the substrate to positions on each of the die.
摘要:
An acoustic wave device includes an acoustic wave element including an IDT electrode provided on a substrate, and a protective film arranged to cover the acoustic wave element so as to stabilize characteristics. The protective film is a silicon nitride film composed of silicon and nitrogen as main components and when a composition ratio of the silicon to the nitrogen is represented by 1:X, X is about 1.15 or less.
摘要:
A component includes a first filter configured to work with acoustic waves. The first filter includes a first sub-filter on a first chip and a second sub-filter on a second chip separate from the first chip. The first filter if a different type of filter, has a different layer structure, or has a different layer thicknesses for at least one layer in comparison to the second filter.
摘要:
The SAW element 11 comprises a serial arm 17 formed between an input terminal 15 and an output terminal 16, two serial arm side SAW resonators 20 located in the serial arm 17, at least three parallel arms 19 connected between the serial arm 17 and a reference potential terminal 18, and parallel arm side SAW resonator 21 located in the parallel arms 19, respectively. Each of these parallel arm side SAW resonators 21 has an anti-resonant frequency corresponding with the predetermined resonant frequency of each serial arm side SAW resonator 20. Further, at least one parallel arm side SAW resonator 21 has a resonant frequency different from those of the other parallel arm side SAW resonators 21. Thereby, not only insertion loss can be prevented from being deteriorated but also an attenuation characteristic of the SAW element 11 can be readily varied.
摘要:
Inductors are provided in chip assemblies such as in packaged semiconductor chips. The inductors may be incorporated in a chip carrier which forms part of the package, and may include, for example, spiral or serpentine inductors formed from traces on the chip carrier. The chip carrier may include a flap bearing the inductive element, and this flap may be bent to tilt the inductive element out of the plane of the chip carrier to reduce electromagnetic interaction between the inductive element and surrounding electrical components. Other inductors include solenoids formed in part by leads on the chip carrier as, for example, by displacing leads out of the plane of the chip carrier to form loops in vertically-extensive planes transverse to the plane of the chip carrier. Additional features provide trimming of the inductor to a desired inductance value during by breaking or connecting leads during assembly.
摘要:
A plurality of surface acoustic wave elements, with an IDT electrode 2 and a pad electrode 3 formed on the principal surface of a piezoelectric substrate 1, are formed to be flip-chip mounted on a circuit board 5 and sealed using sealing resin 7. The circuit board 5 is diced integrally with the sealing resin 7 applying a rotating dicing blade 8 from the bottom surface side thereof to produce a plurality of surface acoustic wave devices. The side surfaces of the surface acoustic wave devices can be formed perpendicularly with dimensional accuracy without rounding or chipping an edge portion of the sealing resin 7.
摘要:
A surface-acoustic-wave filter has a piezoelectric substrate; and a plurality of transversal surface-acoustic-wave (SAW) filters set on the piezoelectric substrate and respectively having at least two inter-digital transducer (IDT) electrodes for transcieving surface acoustic waves, characterized in that periods for surface acoustic waves to propagate from inputs to outputs of the SAW filters differ in the SAW filters and thereby, timings of outputs from the SAW filters are different from each other.
摘要:
The SAW element 11 comprises a serial arm 17 formed between an input terminal 15 and an output terminal 16, two serial arm side SAW resonators 20 located in the serial arm 17, at least three parallel arms 19 connected between the serial arm 17 and a reference potential terminal 18, and parallel arm side SAW resonator 21 located in the parallel arms 19, respectively. Each of these parallel arm side SAW resonators 21 has an anti-resonant frequency corresponding with the predetermined resonant frequency of each serial arm side SAW resonator 20. Further, at least one parallel arm side SAW resonator 21 has a resonant frequency different from those of the other parallel arm side SAW resonators 21. Thereby, not only insertion loss can be prevented from being deteriorated but also an attenuation characteristic of the SAW element 11 can be readily varied.
摘要:
An attempt is made to reduce the size of a multichip package obtained by mounting a plurality of surface acoustic wave elements having different frequency characteristics in one package. For this purpose, when a plurality of surface acoustic wave elements are face-down bonded to a package, the ultrasound wave application direction is set to a direction substantially perpendicular to the direction in which the surface acoustic wave elements are juxtaposed.
摘要:
A surface acoustic wave system having a mounting receptacle on which there are mounted a plurality of surface acoustic wave elements being bonded together by sides of their surface acoustic wave substrates so as to form a single element assembly. With this structure, a plurality of surface acoustic wave elements can be treated as one surface acoustic wave element in the mounting process, and so less problem is taken in the mounting process. For there is no need for saving a space between two neighboring surface acoustic wave elements for the mounting process, the mounting density can be increased. Further, it is possible to bond together the surface acoustic wave elements having different surface acoustic wave substrates and treat the bonded elements as one element, which provides more flexibility to the system design.