Abstract:
Integrated circuit devices including contacts and methods of forming the same are provided. The devices may include a fin on a substrate, a gate structure on the fin and a source/drain region in the fin at a side of the gate structure. The devices may further include a contact plug covering an uppermost surface of the source/drain region and a sidewall of the gate structure. The contact plug may include an inner portion including a first material and an outer portion including a second material different from the first material. The outer portion may at least partially cover a sidewall of the inner portion, and a portion of the outer portion may be disposed between the sidewall of the gate structure and the sidewall of the inner portion.
Abstract:
Integrated circuit devices including strained channel regions and methods of forming the same are provided. The integrated circuit devices may include enhancement-mode field effect transistors. The enhancement-mode field effect transistors may include a quantum well channel region having a well thickness TW sufficient to yield a strain-induced splitting of a plurality of equivalent-type electron conduction states therein to respective unequal energy levels including a lowermost energy level associated with a lowermost surface roughness scattering adjacent a surface of the channel region when, the surface is biased into a state of inversion.
Abstract:
Methods of forming a fin-shaped Field Effect Transistor (FinFET) are provided. The methods may include selectively incorporating source/drain extension-region dopants into source and drain regions of a semiconductor fin, using a mask to block incorporation of the source/drain extension-region dopants into at least portions of the semiconductor fin. The methods may include removing portions of the source and drain regions of the semiconductor fin to define recesses therein. The methods may include epitaxially growing source and drain regions from the recesses in the semiconductor fin.
Abstract:
Methods of fabricating non-planar transistors including current enhancing structures are provided. The methods may include forming first and second fin structures directly adjacent each other overlying a substrate including an isolation layer. The methods may further include forming a spacer on the isolation layer including first and second recesses exposing upper surfaces of the first and second fin structures respectively. The spacer may cover an upper surface of the isolation layer between the first and second recesses. The methods may also include forming first and second current enhancing structures contacting the first and second fin structures, respectively, in the first and second recesses.
Abstract:
Methods of fabricating integrated circuit device with fin transistors having different threshold voltages are provided. The methods may include forming first and second semiconductor fins including first and second semiconductor materials, respectively, and covering at least one among the first and second semiconductor fins with a mask. The methods may further include depositing a compound semiconductor layer including the first and second semiconductor materials directly onto sidewalls of the first and second semiconductor fins not covered by the mask and oxidizing the compound semiconductor layer. The oxidization process oxidizes the first semiconductor material within the compound semiconductor layer while driving the second semiconductor material within the compound semiconductor layer into the sidewalls of the first and second semiconductor fins not covered by the mask.
Abstract:
A semiconductor cell block includes a series of layers arranged in a stack. The layers include one or more first layers each having a first height and one or more second layers each having a second height. The second height is larger than the first height, and the second height is a non-integer multiple of the first height. The semiconductor cell block also includes a first semiconductor logic cell having a first cell height in one of the series of layers, and a second semiconductor logic cell having a second cell height in one of the series of layers. The second cell height is larger than the first cell height, and the second cell height is a non-integer value multiple of the first cell height.
Abstract:
A monolithic three-dimensional integrated circuit including a first device, a second device on the first device, and a thermal shield stack between the first device and the second device. The thermal shield stack includes a thermal retarder portion having a low thermal conductivity in a vertical direction, and a thermal spreader portion having a high thermal conductivity in a horizontal direction. The thermal shield stack of the monolithic three-dimensional integrated circuit includes only dielectric materials.
Abstract:
A monolithic three-dimensional integrated circuit including a first device, a second device on the first device, and a thermal shield stack between the first device and the second device. The thermal shield stack includes a thermal retarder portion having a low thermal conductivity in a vertical direction, and a thermal spreader portion having a high thermal conductivity in a horizontal direction. The thermal shield stack of the monolithic three-dimensional integrated circuit includes only dielectric materials.
Abstract:
According to some example embodiments of the present disclosure, a semiconductor device includes: a substrate; a first semiconductor layer over the substrate, the first semiconductor layer being a first type of semiconductor device; and a second semiconductor layer over the substrate and the first semiconductor layer, the second semiconductor layer being the first type of semiconductor device, wherein a first portion of the first semiconductor layer overlaps the second semiconductor layer when viewed in a direction perpendicular to a plane of the substrate and a second portion of the first semiconductor layer is laterally offset from the second semiconductor layer when viewed in the direction perpendicular to the plane of the substrate.
Abstract:
A semiconductor integrated circuit including a substrate, a series of metal layers, and a series of insulating layers. The metal layers and the insulating layers are alternately arranged in a stack on the substrate. The semiconductor integrated circuit also includes at least two standard cells in the substrate and at least one power rail crossing over boundaries of the at least two standard cells. The power rail includes a vertical section of conductive material extending continuously through at least two vertical levels of the stack. The two vertical levels of the stack include one metal layer and one insulating layer. The insulating layer is above the metal layer.