Abstract:
A neuromorphic apparatus configured to process a multi-bit neuromorphic operation including a single axon circuit, a single synaptic circuit, a single neuron circuit, and a controller. The single axon circuit is configured to receive, as a first input, an i-th bit of an n-bit axon. The single synaptic circuit is configured to store, as a second input, a j-th bit of an m-bit synaptic weight and output a synaptic operation value between the first input and the second input. The single neuron circuit is configured to obtain each bit value of a multi-bit neuromorphic operation result between the n-bit axon and the m-bit synaptic weight, based on the output synaptic operation value. The controller is configured to respectively determine the i-th bit and the j-th bit to be sequentially assigned for each time period of different time periods to the single axon circuit and the single synaptic circuit.
Abstract:
A method of growing a two-dimensional transition metal dichalcogenide (TMD) thin film and a method of manufacturing a device including the two-dimensional TMD thin film are provided. The method of growing the two-dimensional TMD thin film may include a precursor supply operation and an evacuation operation, which are periodically and repeatedly performed in a reaction chamber provided with a substrate for thin film growth. The precursor supply operation may include supplying two or more kinds of precursors of a TMD material to the reaction chamber. The evacuation operation may include evacuating the two or more kinds of precursors and by-products generated therefrom from the reaction chamber.
Abstract:
A photodetector having a small form factor and having high detection efficiency with respect to both visible light and infrared rays may include a first electrode, a collector layer on the first electrode, a tunnel barrier layer on the collector layer, a graphene layer on the tunnel barrier layer, an emitter layer on the graphene layer, and a second electrode on the emitter layer. The photodetector may be included in an image sensor. An image sensor may include a substrate, an insulating layer on the substrate, and a plurality of photodetectors on the insulating layer. The photodetectors may be aligned with each other in a direction extending parallel or perpendicular to a top surface of the insulating layer. The photodetector may be included in a LiDAR system.
Abstract:
A method of managing application programs and an electronic device adapted to the method are provided. In an electronic device with a touchscreen display including a first portion facing a first direction and a second portion facing a second direction differing from the first direction, the second portion extending from one edge of the first portion, the method includes storing an application program including a default function and a plurality of sub-functions, receiving a first input, displaying a user interface (UI) in response to the first input, the UI providing a first indication corresponding to the application program and a plurality of second indications corresponding to the plurality of sub-functions of the application program, receiving a second input selecting a second indication of a plurality of second indications, and displaying a third indication corresponding to a selected sub-function of the plurality of sub-functions in response to the selected second indication.
Abstract:
A flexible device includes an electronic device having an electrode and a flexible interconnect layer formed on the electrode. The flexible interconnect layer includes a two-dimensional (2D) material and a conductive polymer to have high electric conductivity and flexibility. The flexible device includes a flexible interconnect layer of one or more layers, and in this case, includes a low-dielectric constant dielectric layer between the respective layers.
Abstract:
An electronic device includes a 2D material layer having a bandgap. The 2D material layer includes two multilayer 2D material regions and a channel region therebetween. A first electrode electrically contacts one of the multilayer 2D material regions, and a second electrode electrically contacts the other of the multilayer 2D material regions.
Abstract:
Provided are electronic devices and methods of manufacturing same. An electronic device includes an energy barrier forming layer on a substrate, an upper channel material layer on the substrate, and a gate electrode that covers the upper channel material layer and the energy barrier forming layer. The gate electrode includes a side gate electrode portion that faces a side surface of the energy barrier forming layer. The side gate electrode may be configured to cause an electric field to be applied directly on the energy barrier forming layer via the side surface of the energy barrier forming layer, thereby enabling adjustment of the energy barrier between the energy barrier forming layer and the upper channel material layer. The electronic device may further include a lower channel material layer that is provided on the substrate and does not contact the upper channel material layer.
Abstract:
An electronic device includes first and second electrodes that are spaced apart from each other and a 2D material layer. The 2D material layer connects the first and second electrodes. The 2D material layer includes a plurality of 2D nanomaterials. At least some of the 2D nanomaterials overlap one another.
Abstract:
Example embodiments relate to a fin-type graphene device. The fin-type graphene device includes a substrate, a graphene channel layer substantially vertical to the substrate, a gate insulating layer that covers one side surface of the graphene channel layer, a gate electrode on the gate insulating layer, and a source electrode and a drain electrode that are formed separately from each other on other side surface of the graphene channel layer.
Abstract:
A capacitor includes a first electrode including a conductive layer, a second electrode spaced apart from the first electrode, a dielectric layer disposed between the first electrode and the second electrode, and an interfacial layer disposed between the first electrode and the dielectric layer, wherein the conductive layer includes a first element, a second element, and a third element, the first element includes Ti or Al, the second element includes Ti, Al, Hf, Zr, Ta, Cr, Y, Sc, Si, Nb, Mo, V, W, Mn, Ni, or Co, the third element includes N, the first element and the second element are different from each other, and the conductive layer has a rock salt crystal structure.