Abstract:
Electrostatic lens for focussing the beams of charged particles, more particularly of ions, which have electrodes being designed as an electric conductor with a ring-shaped section, the inner edge of which is essentially circular, whereas at least one of the electrodes is composed of sector areas (4) succeeding one another along the periphery of an electrode, whereas each sector area is covering one predetermined angle area of the periphery, the sector areas are electrically connected to one another and the sector areas are linked to the holding device via at least one adjusting element per sector area the position of the sector areas may be adjusted irrespective of the other sector areas by means of the adjusting elements during operation of the electrostatic lens. The sector areas may be mechanically separated or extend from one thickness minimum of an electrode cross-section with periodically varying thickness to the next one.
Abstract:
A particle beam, in particular in ionic on the reproduction system, preferably for lithographic purposes, has a particle source, in particular an ion source for reproducing on a wafer a structure designed in a masking foil as one or several transparent spots, in particular openings, through at least two electrostatic lenses arranged upstream of the wafer. One of the lenses is a grating lens constituted by one or two tubular electrodes and by a perforated plate arranged in the path of the beam perpendicularly to the optical axis. The plate is formed by a masking foil which forms the central or first electrode of the granting lens, in the direction of propagation of the beam.
Abstract:
A particle-beam projection processing apparatus for irradiating a target, with an illumination system for forming a wide-area illuminating beam of energetic electrically charged particles; a pattern definition means for positioning an aperture pattern in the path of the illuminating beam; and a projection system for projecting the beam thus patterned onto a target to be positioned after the projection system. A foil located across the path of the patterned beam is positioned between the pattern definition means and the position of the target at a location close to an image of the aperture pattern formed by the projection system.
Abstract:
A charged particle system comprises a particle source for generating a beam of charged particles and a particle-optical projection system. The particle-optical projection system comprises a focusing first magnetic lens (403) comprising an outer pole piece (411) having a radial inner end (411′), and an inner pole piece (412) having a lowermost end (412′) disposed closest to the radial inner end of the outer pole piece, a gap being formed by those; a focusing electrostatic lens (450) having at least a first electrode (451) and a second electrode (450) disposed in a region of the gap; and a controller (C) configured to control a focusing power of the first electrostatic lens based on a signal indicative of a distance of a surface of a substrate from a portion of the first magnetic lens disposed closest to the substrate.
Abstract:
Method of synthesizing carbon nano tubes (CNTs) on a catalyst layer formed on a support member, by catalytic deposition of carbon from a gaseous phase, whereby an ion beam is used prior to, during, and/or after formation of the carbon nano tubes for modifying the physical, chemical, and/or conductive properties of the carbon nanotubes.
Abstract:
In a particle-optical imaging lithography system, an illuminating system comprising a particle source and a first electrostatic lens arrangement produces a particle beam which penetrates a mask foil provided with an orifice structure positioned in the particle beam path. This structure is imaged on a substrate plane by a projection system comprising a second electrostatic lens arrangement. The first and second lens arrangements each comprise, on their respective sides facing the mask holding device, at least one pre- and post-mask electrode, respectively. By applying different electrostatic potentials to the pre- and post-mask electrodes and to the mask foil, the mask foil and the pre-mask electrode form a grid lens with negative refracting power, and the mask foil and the post-mask electrode also form a grid lens with negative refracting power.
Abstract:
An arrangement for shadow-casting lithography by focusing electrically charged particles for the purpose of imaging structures of a mask on a substrate disposed immediately to the rear thereof, comprising a particle source (2) and an extraction system (3) which produces a divergent particle beam issuing from a substantially point-shaped virtual source, and comprising a lens (6) for focusing the divergent particle beam which comprises an electrode arrangement (6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h) which includes at least one electrostatic collector lens (6a to 6f in conjunction with an electrostatic diverging lens (6g, 6h) in order to be able to compensate lens errors of the collector lens in a purposeful manner with respect to lens errors of the diverging lens and to render possible a predeterminable change in the imaging scale. The diverging lens is preferably disposed in the beam direction at a distance to the rear of the collector lens in immediate proximity of the mask in order to be able to use the mask as a grating for the diverging lens.
Abstract:
An arrangement for masked beam lithography by means of electrically charged particles for the imaging of structures of a mask on a substrate arranged behind it, with a substantially punctiform particle source (Q) and an extraction system (Ex) for a specific type of charged particles which leave the source (Q) in the form of a divergent particle beam, and with an electrode arrangement (B, B', El.sub.1, El.sub.2, E.sub.3, . . . El.sub.n) for concentrating the divergent particle beam into a particle beam which is at least approximately parallel, by means of which an electrostatic acceleration field (E) is generated, the potential (U) of which in the beam direction has a constant gradient at least in parts and perpendicular to the beam direction is substantially constant at least within the beam cross-section. The electrode arrangement can be formed for example by a plurality of coaxial ring electrodes (El.sub.1, El.sub.2, El.sub.3, . . . El.sub.n) which are disposed at intervals behind one another in the beam direction, by a coaxial hollow cylinder which is aligned in the beam direction or a grating with a predetermined constant electrical resistance per unit of length, or by a plurality of longitudinal bars which are aligned in the beam direction, disposed parallel on surface of an imaginary coaxial cylinder with a predetermined constant electrical resistance per unit of length.
Abstract:
A charged particle, in particular ion projector system, has a mask arranged in the path of the charged particle beam and provided with transparent spots, in particular openings, arranged asymmetrically to the optical axis, which are reproduced on a wafer by means of lenses arranged in the path of the charged particle beam. The charged particle beam has at least one cross-over (crosses the optical axis at least once) between the mask and the wafer. Charged particles with an opposite charge to the charge of the reproduction particles are supplied into the path of the reproduction charged particle beam in a defined area located between the mask and the wafer. The limits that define said area are selected in such a way that the absolute value of the integral effect of the space charge on the particles that reproduce the mask structures is as high upstream of said area (seen in the direction of radiation) as the absolute value of the integral effect of the space charge downstream of said area.
Abstract:
In an ion optical imaging system, especially for lithographic imaging on a wafer, two collecting lenses are provided between the mask and the wafer. At least one of the collecting lenses is a three-electrode grid lens, i.e. a lens in which a grid is disposed perpendicular to the optical axis between a pair of tubular electrodes.