Abstract:
A drawing apparatus includes a detection unit which detects defective beam and a control unit which controls irradiation with normal beam and the irradiation position in the sub-scanning direction. The control unit controls the irradiation such that, in accordance with a detection result of the detection unit, a normal beam is irradiated instead of the defective beam at a position that has been planned to be irradiated with the defective beam by changing an amount of change in the irradiation positions of the plurality of beams from the predetermined amount and, in a case in which the detection unit stops detecting the defective beam, the amount of change in the irradiation position of the plurality of beams is restored to the predetermined amount.
Abstract:
The invention relates to a system for magnetically shielding a charged particle lithography apparatus. The system comprises a first chamber, a second chamber and a set of two coils. The first chamber has walls comprising a magnetic shielding material, and, at least partially, encloses the charged particle lithography apparatus. The second chamber also has walls comprising a magnetic shielding material, and encloses the first chamber. The set of two coils is disposed in the second chamber on opposing sides of the first chamber. The two coils have a common axis.
Abstract:
Provided is a drawing apparatus including a plurality of drawing devices each of which is configured to draw a pattern on a substrate with a plurality of charged particle beams, the plurality of drawing devices performing respective drawings in parallel, the drawing apparatus comprising: a measuring device configured to measure a flatness of the substrate, wherein each of the plurality of drawing devices comprises: a charged particle optical system configured to irradiate the substrate with the plurality of charged particle beams; and a controller configured to control an operation of the charged particle optical system so as to compensate for distortion of the pattern which is determined by data of inclination of a charged particle beam of the charged particle beams with respect to an axis of the charged particle optical system and data of the flatness measured by the measuring device.
Abstract:
Reflected and scattered electrons generated by emitting an electron beam onto a substrate are detected by a detecting unit. The product of the area (SN) and the irradiation time (tN) of the Nth shot in a predetermined measurement unit obtained from writing data is computed by a computing unit. The value obtained by accumulating an instructed equivalent value in the predetermined measurement unit and the value obtained by integrating the signal (DN) from the detecting unit in the predetermined measurement unit are compared and determined by a comparing unit to determine whether or not abnormality occurs in the irradiation amount of the electron beam.
Abstract:
A significant improvement in the alignment of a particle-beam-generated pattern relative to a pre-existing pattern present on a substrate has been accomplished using optical measurement to register the particle beam to the pre-existing pattern. Use of a position fiducial which can be accurately measured by both an optical microscope and a particle beam axis is used to align a pre-existing pattern with a particle-beam-generated pattern during writing of the particle-beam-generated pattern. Registration of the pre-existing pattern to the fiducial and registration of the particle beam axis to the fiducial periodically during production of the particle-beam-generated pattern continually provides an improvement in the overall alignment of the pattern being created to the pre-existing pattern on the substrate. The improved method of alignment can be used to correct for drift, or thermal expansion, or gravitational sag, by way of example.
Abstract:
Improved systems, apparatus, and methods for detecting positions of moving stages and accurately compensating position error during operation (in “real time”) are provided. For some embodiments, rather than rely on two dimensional position measurements, measurements in at least three dimensions may be taken allowing compensation for pitch and roll and, therefore, more accurate position measurements. Further, by including a measurement of a beam column, compensation for movement of the beam may be performed.
Abstract:
An electron beam apparatus with an aberration corrector using multipole lenses is provided. The electron beam apparatus has a scan mode for enabling the operation of the aberration corrector and a scan mode for disabling the operation of the aberration corrector and the operation of each of the aberration corrector, a condenser lens, and the like is controlled such that the object point of an objective lens does not change in either of the scan modes. If a comparison is made between the secondary electron images of a specimen in the two modes, the image scaling factor and the focus remain unchanged and evaluation and adjustment can be performed by distinctly recognizing only the effect of the aberration corrector. This reduces the time required to adjust an optical axis which has been long due to an axial alignment defect inherent in the aberration corrector and an axial alignment defect in a part other than the aberration corrector which are indistinguishably intermingled with each other.
Abstract:
A position measurement apparatus includes a movable stage structure, a measurement unit using a laser to measure a moved position of the stage and to output a corresponding measured value, a first filter configured to attenuate a first component of a certain frequency region of the measured value outputted by said measurement unit, a second filter connected in parallel with said first filter configured to attenuate a second component other than the certain frequency region of the measured value outputted by said measurement unit, a third filter connected in series to said second filter with the series connection of said second and third filters connected in parallel with the first filter, configured to attenuate the first component of said certain frequency region of the measured value outputted by said measurement unit, and a synthetic unit configured to combine an output of said first filter and an output of the series connection of the second and third filters and to thereby output a first combined value.
Abstract:
A charged particle beam photolithography machine includes an electron gun, a deflector, a wafer stage, a standard substrate formed with a chip-shaped first mark group having a plurality of first marks and a chip-shaped second mark group having a plurality of second marks, a correction map having misalignment factors of the first marks based on positions of the second marks, and a deflection control unit for controlling an amount of deflection in the deflector. The charged particle is irradiated on a wafer while the deflection control unit makes reference to the correction map and corrects the amount of deflection as equivalent to the misalignment factors.
Abstract:
The present invention relates to a deflector of a micro-column electron beam apparatus and method for fabricating the same, which forms a seed metal layer and a mask layer on both sides of a substrate, and exposes some of the seed metal layer on which deflecting plates, wirings and pads are to be formed by lithography process using a predetermined mask. The wirings and pads are formed by plating metal on the exposed portion, and some of the metal layer is also exposed on which the deflecting plates are to be formed using a predetermined mask, and then the metal is plated with desired thickness, thereby the deflecting plates are completed. Therefore, by forming plurality of deflecting plates on both sides of the substrate at the same time through plating process, alignment between the deflecting plates formed on both sides of the substrate can be exactly made, and by fabricating a deflector integrated with the substrate and deflecting plates in a batch process, productivity and reproducibility is improved. In addition, since the deflecting plates, wirings and pads are directly formed on the substrate, structural safety is improved and thereby durability is also improved.