Abstract:
An engine, an engine starter and its housing assembly are provided. The housing assembly includes a gear mounting portion for mounting a driving gear and a switch mounting portion for mounting a solenoid switch. The switch mounting portion comprises a connecting portion and a cover body. The connecting portion is connected with the gear mounting portion and comprises a through structure for mounting the solenoid switch, the cover body covers a top end of the through structure. A wall of the connecting portion corresponding to the gear mounting portion defines an opening for mounting a shifting fork, which is in communication with the through structure.
Abstract:
The engine starter includes a pinion-mobile component which is linked to an output shaft by a helical spline and can be slid in a shaft direction, in a state where the pinion-mobile component includes; an overrunning clutch which is idled when the pinion gear, which is engaged to the ring gear, is driven by the engine via the ring gear so as to be rotated at a rotational speed which is higher than a rotational speed of the output shaft; and a breaking mechanism in which the overrunning clutch breaks a transmission of a torque, which is generated in accordance with a rotation of the motor and is transmitted to the ring gear, when a value of the torque is a predetermined condition value with respect to a direction where the torque is transmitted to the ring gear.
Abstract:
A vehicle including a combustion engine, a belt alternator starter, and a decouplable accessory power take-off for auxiliary units, wherein the accessory power take-off includes, as auxiliary units, at least an air-conditioning compressor and an electric motor as belt alternator starter that is usable as a motor and as a generator, wherein a coupling and a decoupling of the accessory power take-off occurs by means of a form-fitting clutch, and wherein at a standstill of the combustion engine during a short stop phase, a stationary air-conditioning operation occurs by means of a reverse rotation of the auxiliary units, and wherein a starting of the combustion engine after the short stop phase occurs by means of a reversal of the direction of rotation of the electric motor.
Abstract:
A starter freewheel is provided. The starter freewheel has a first race, a second race, a wedging gap formed between the first and second races, at least one wedging element arranged in the wedging gap, and at least one further component. The further component is in rotary drive connection with one of the races. The component is formed by at least two sheet-metal parts connected to one another in sandwich-fashion. A freewheel arrangement having a starter freewheel of this kind is also provided.
Abstract:
A device designed to be a fixture for a commercially available battery operated drill/driver gun to start an internal combustion engine such as a model airplane engine by pressing the device onto the nose cone of the engine. The portion of the device which comes into contact with the nose cone of the engine is a cylinder connected to a shaft with a one way clutch. A rubber or silicone adapter is inserted into the cylinder attached to the shaft; the adaptor cone of the engine fits into the rubber or silicone adapter on the device.
Abstract:
A starter for an engine is provided which includes an electromagnetic brake device and a pinion thrust mechanism. The electromagnetic brake device holds a planetary carrier from rotating. The pinion thrust mechanism converts rotational motion of an internal gear into linear motion of a pinion when the rotation of the planetary carrier is locked. The pinion thrust mechanism includes a cylindrical cam cylinder, a starter housing, a thrust collar rotatable relative to the pinion, and an engaging pin. The cam cylinder is joined to the internal gear and has a circumferential extending cam groove. The starter housing has a straight groove traversing the cam groove. The engaging pin engages both the cam groove and the straight groove and is moved linearly with rotation of the cam cylinder. This enables the linear movement of the pinion regardless of a helix angle of the spline mounted on the output shaft.
Abstract:
A tensioner is disclosed. The tensioner includes an arm, a tong, and a clutch. The arm is rotatable about a first axis in an opposite direction. The arm includes at least one stopping element. The tong is selectively engaged with the at least one stopping element of the arm. The arm is substantially prevented from rotating in the opposite direction if the tong is engaged with the at least one stopping element. The clutch is operatively coupled to the arm. The clutch includes an engaged and a disengaged position. If the clutch is in the engaged position, then the tong is engaged with the at least one stopping element of the arm.
Abstract:
It is possible to obtain an engine starting device in which, at the time of initial engagement of a first pinion gear and an engine starting gear, in a case where the first pinion gear collides with the engine starting gear, the first pinion gear is inclined with respect to the second pinion gear, a void having a predetermined size for expanding the inclined state is formed between a surface of an end surface portion of the first pinion gear on the side of an end surface portion of the second pinion gear, and a surface of an end surface portion of the second pinion gear on the side of the end surface portion of the first pinion gear, even in a case where any one of the rotation speed of the engine starting gear and the rotation speed of the pinion gear is larger than the other, rotation synchronization of the engine starting gear and the pinion gear and phase focusing of the teeth between the engine starting gear and the pinion gear is further rapidly and further reliably performed at the time when the engine starting gear and the pinion gear is abutted to each other, noise is decreased, and shortening of the life due to abrasion can be suppressed.
Abstract:
Disclosed is an idle stop control device that automatically shuts down an engine when a first condition is satisfied, and then restarts the engine using a starter to which electricity is fed through a brush when a second condition is satisfied, the idle stop control device including a start-operation brush wear amount computing unit that is configured to compute a brush wear amount in a single start operation, a total brush wear amount computing unit that is configured to compute a total brush wear amount by integrating the brush wear amount in a single start operation, and an automatic engine shutdown prohibiting unit that is configured to prohibit an automatic engine shutdown when the total brush wear amount is equal to or larger than a warranty driving wear amount of the starter.
Abstract:
A power transmission system transmits power from an internal combustion engine to a first and a second auxiliary device through an endless transmitting member. Prior to issuing of an engine start request, the first auxiliary device is actuated to move a tensioner pulley to a given position to increase the degree of tension of the endless transmitting member. The actuation of the first auxiliary device as an engine starter upon the issuing of the engine start request, therefore, enables a drive shaft of the engine to be rotated immediately within a required time to crank the engine. This achieves a quick start of the engine and results in a decrease in amount of time between the issuing of the engine start request and the actual start of the engine.