Abstract:
A secondary-ion mass spectrometry apparatus using a field limiting method includes an optical system for primary ions, a sample chamber, and an optical system for secondary ions, and a total ion monitor (TIM) interposed between an electric sector and a magnetic sector of the optical system for secondary ions. A field-limited image (or TIM image) from the TIM can be observed or monitored continually by a CRT, thereby making it possible to grasp quantitatively the charging state of a sample surface. The apparatus may further include an adjuster for adjusting quantatively the charging state of the sample surface.
Abstract:
A sample is analyzed by irradiating it with a charged-particle beam and detecting characteristic X-rays. The surface of the sample is magnified and displayed on a CRT, and analytical areas, analytical positions and a travel path for the charged-particle beam are designated on the image displayed by the CRT. The travel path of the charged-particle beam is designated by an operator via an input unit while the operator observes the image on the CRT. It is also possible to compute and designate the travel path by an arithmetic unit based on positional coordinate data indicative of the analytical areas, analytical positions and non-irradiated areas without requiring an operation by the operator.
Abstract:
A converged ion beam apparatus wherein a very small beam spot can be formed with a high energy ion beam after passing a reduced route in which a type of the ion beam is classified. The device is incorporated in an apparatus wherein an ion beam from an accelerator is introduced in a spot to a specimen by way of an ion type classifying device, an objective collimator and a beam collector to perform reforming of a surface or an analysis of physical properties and/or composition or the like of a small area of the specimen. The objective collimator is disposed just on the downstream of the accelerator, and an analyzing component for analyzing an ion type and energy of a beam is interposed in a drift space in an object distance between the objective collimator and a quadruple pole magnetic lens. Several components of the apparatus are also improved including the quadruple pole magnetic lens, an objective slit device and a specimen chamber.
Abstract:
A method of investigating materials, especially biological specimens, utilizes a focused accelerated beam of electrons within an evacuated chamber, striking a metal foil within the chamber and exposing a specimen outside the evacuated chamber to x-rays generated in the metal foil. The apparatus of the invention functions as an x-ray microscope and in a preferred embodiment, as a scanning x-ray microscope.
Abstract:
A secondary ion mass spectrometry apparatus for analyzing an element contained in the sample by radiating a primary ion beam extracted from an ion source to an analytical sample through a focusing system. The secondary ion mass spectrometry apparatus comprises an input unit for inputting data containing analytical elements names and areas, a storage unit for storing operational expressions to be operated on the input data from the input unit and a table to be reference on the input data and the results operated by the operational expressions and from which the necessary data is read, and a control unit for setting focusing conditions of said focusing system using the input data inputted from said input unit and the operational expressions and tables stored in the storage unit.
Abstract:
A charged particle beam apparatus comprising a charged particle beam source(s) for generating an ion beam and an electron beam, a focusing lens system for finely focusing each of the generated ion beam and electron beam, a charged particle beam deflecting system for deflecting each of the focused ion beam and electron beam, and a specimen subjected to irradiation thereof with each of the focused ion beam and electron beam is provided with means for detecting the deviation of the irradiation positions of the ion beam and the electron beam on the specimen from each other and means for making the irradiation positions of the ion beam and the electron beam on the specimen coincident with each other on the basis of the result of detection of the deviation of the irradiation positions from each other.
Abstract:
An objective lens in an electron microscope is adapted to detection of Auger electrons. Using an additional lens field, preferably including the use of a VAIL lens, the electrons to be detected are spiraled to a selection space. Between the lens field and the selection space a preferably displaceable, magnetic diaphragm is arranged for the separation of lens fields.
Abstract:
A charged particle beam apparatus is disclosed, which comprises a charged particle source; focusing means for focusing a charged particle beam emitted by the charged particle source on a sample and irradiating it therewith; deflecting means for deflecting the charged particle beam so as to scan the sample therewith; secondary ion separating means disposed approximately symmetrically with respect to the axis of the charged particle beam at the proximity of said sample and separating positive and negative secondary ions generated by the irradiation of the sample into positive and negative ions; and mass analyzers for analyzing the mass of the separated positive and negative secondary ions, respectively.
Abstract:
In a secondary ion mass spectrograph, the electrical power supply voltages controlling and pertaining to the polarity of the target secondary ions are all switched between opposite polarities simultaneously while the deflection of the primary ion beam is automatically corrected for any error that may result from the polarity switch-over. This allows quick alternation of the polarity of target ions without loss of accuracy of the primary beam scan. The correction to the primary beam deflected may be predetermined under specific observing conditions or may be derived from theoretical considerations.
Abstract:
A primary ion beam raster gating technique for secondary ion mass spectrometer system is disclosed. The system includes a primary ion gun which raster scans an area of the surface being tested which sputter etches a crater. After the crater is formed, a beam blanking circuit causes the beam to scan a smaller area at the bottom of the first crater thereby sputter etching a second smaller crater. During this phase, the ion beam does not hit the side wall of the first crater so that errors are not introduced into secondary ion measurement from the bottom of the second crater due to material from the side wall of the first crater being sputtered into the second crater.