Abstract:
A low power, high speed magneto-resistive memory is disclosed. The disclosed memory directly senses the resistive state of one or more magneto-resistive memory elements. This allows the memory to be read during a single read cycle, without the need for a word line current. This may substantially increase the speed and reduce the power of the memory.
Abstract:
A new read gate design for the vertical Bloch line (VBL) memory is disclosed which offers larger operating margin than the existing read gate designs. In the existing read gate designs, a current is applied to all the stripes. The stripes that contain a VBL pair are chopped, while the stripes that do not contain a VBL pair are not chopped. The information is then detected by inspecting the presence or absence of the bubble. The margin of the chopping current amplitude is very small, and sometimes non-existent. A new method of reading Vertical Bloch Line memory is also disclosed. Instead of using the wall chirality to separate the two binary states, the spatial deflection of the stripe head is used. Also disclosed herein is a compact memory which uses vertical Bloch line (VBL) memory technology for providing data storage. A three-dimensional arrangement in the form of stacks of VBL memory layers is used to achieve high volumetric storage density. High data transfer rate is achieved by operating all the layers in parallel. Using Hall effect sensing, and optical sensing via the Faraday effect to access the data from within the three-dimensional packages, an even higher data transfer rate can be achieved due to parallel operation within each layer.
Abstract:
A nonvolatile magnetic random access memory can be achieved by an array of magnet-Hall effect (M-H) elements. The storage function is realized with a rectangular thin-film ferromagnetic material having an in-plane, uniaxial anisotropy and inplane bipolar remanent magnetization states. The thin-film magnetic element is magnetized by a local applied field, whose direction is used to form either a "0" or "1" state. The element remains in the "0" or "1" state until a switching field is applied to change its state. The stored information is detcted by a Hall-effect sensor which senses the fringing field from the magnetic storage element. The circuit design for addressing each cell includes transistor switches for providing a current of selected polarity to store a binary digit through a separate conductor overlying the magnetic element of the cell. To read out a stored binary digit, transistor switches are employed to provide a current through a row of Hall-effect sensors connected in series and enabling a differential voltage amplifier connected to all Hall-effect sensors of a column in series. To avoid read-out voltage errors due to shunt currents through resistive loads of the Hall-effect sensors of other cells in the same column, at least one transistor switch is provided between every pair of adjacent cells in every row which are not turned on except in the row of the selected cell.
Abstract:
A magnetoresistive random access memory (MRAM) die may include an MRAM cell, a reservoir defined by the MRAM die, and a chemical disposed in the reservoir. At least one boundary of the reservoir may be configured to be damaged in response to attempted tampering with the MRAM die, such that at least some of the chemical is released from the reservoir when the at least one boundary of the reservoir is damaged. In some examples, at least some of the chemical is configured to contact and alter or damage at least a portion of the MRAM cell when the chemical is released from the reservoir.
Abstract:
A magnetoresistive random access memory (MRAM) package may include an MRAM die, a package defining a cavity and an exterior surface, and a magnetic security structure disposed within the cavity or on the exterior surface of the package. The MRAM die may be disposed in the cavity of the package, and the magnetic security structure may include at least three layers including a permanent magnetic layer and a soft magnetic layer.
Abstract:
A magnetic shield is presented. The shield may be used to protect a microelectronic device from stray magnetic fields. The shield includes at least two layers. A first layer includes a magnetic material that may be used to block DC magnetic fields. A second layer includes a conductive material that may be used to block AC magnetic fields. Depending on the type of material that the first and second layers include, a third layer may be inserted in between the first and second layers. The third layer may include a non-conductive material that may be used to ensure that separate eddy current regions form in the first and second layers.
Abstract:
This disclosure is directed to a magnetic logic gate for implementing a combinational logic function. The magnetic logic gate may include a write circuit configured to apply a spin-polarized current to the magnetoresistive device such that a resulting programmed magnetization state of the magnetoresistive device corresponds to a logic input value of a combinational logic function implemented by the magnetic logic device. The magnetic logic gate may further include a read circuit configured to generate a logic output value for the combinational logic function based on the programmed magnetization state in response to the write circuit applying the spin-polarized current to the magnetoresistive device.
Abstract:
This disclosure describes write current temperature compensation techniques for use in programming a data storage device that includes one or more memory cells. The techniques may include programming a programmable magnetization state of a magnetoresistive device included within a resistance network based on a signal indicative of the operating temperature of a magnetic memory cell. The techniques may further include generating a write current having a magnitude that is determined at least in part by the programmable magnetization state of the magnetoresistive device. The techniques may further include supplying the write current to the magnetic memory cell for programming a programmable magnetization state of the magnetic memory cell.
Abstract:
A system includes a continuous thin-film ferromagnetic layer, N magnetic tunnel junction (MTJ) devices, and N write structures. The continuous thin-film ferromagnetic layer includes N modified regions. Each of the N modified regions is configured to stabilize a magnetic domain wall located in the continuous thin-film ferromagnetic layer. Each of the N MTJ devices includes one of N portions of the continuous thin-film ferromagnetic layer. Adjacent MTJ devices of the N MTJ devices are separated by one of the N modified regions. Each of the N write structures is configured to receive current and generate a magnetic field that magnetizes a different one of the N portions of the continuous thin-film ferromagnetic layer. N is an integer greater than 2.
Abstract translation:一种系统包括连续的薄膜铁磁层,N磁性隧道结(MTJ)器件和N个写入结构。 连续薄膜铁磁层包括N个改性区域。 N个修饰区域中的每一个被配置为稳定位于连续薄膜铁磁层中的磁畴壁。 N MTJ器件中的每一个包括连续薄膜铁磁层的N个部分中的一个。 N个MTJ设备的相邻MTJ设备由N个修改区域之一分隔开。 N个写入结构中的每一个被配置为接收电流并且产生使连续薄膜铁磁层的N个部分中的不同一个磁化的磁场。 N是大于2的整数。
Abstract:
This disclosure is directed to a magnetic logic gate for implementing a combinational logic function. The magnetic logic gate may include a write circuit configured to apply a spin-polarized current to the magnetoresistive device such that a resulting programmed magnetization state of the magnetoresistive device corresponds to a logic input value of a combinational logic function implemented by the magnetic logic device. The magnetic logic gate may further include a read circuit configured to generate a logic output value for the combinational logic function based on the programmed magnetization state in response to the write circuit applying the spin-polarized current to the magnetoresistive device.