Abstract:
A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of stacked component units stacked in a first direction, each of the stacked component units including a first conducting film made of a semiconductor of a first conductivity type provided perpendicular to the first direction and a first insulating film stacked in the first direction with the first conducting film; a semiconductor pillar piercing the stacked structural unit in the first direction and including a conducting region of a second conductivity type, the semiconductor pillar including a first region opposing each of the first conducting films, and a second region provided between the first regions with respect to the first direction, the second region having a resistance different from a resistance of the first region; and a second insulating film provided between the semiconductor pillar and the first conducting film.
Abstract:
A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.
Abstract:
A nonvolatile semiconductor memory device includes: forming a stacked body by alternately stacking a plurality of interlayer insulating films and a plurality of control gate electrodes; forming a through-hole extending in a stacking direction in the stacked body; etching a portion of the interlayer insulating film facing the through-hole via the through-hole to remove the portion; forming a removed portion; forming a first insulating film on inner faces of the through-hole and the portion in which the interlayer insulating films are removed; forming a floating gate electrode in the portion in which the interlayer insulating films are removed; forming a second insulating film so as to cover a portion of the floating gate electrode facing the through-hole; and burying a semiconductor pillar in the through-hole.
Abstract:
An electrically erasable programmable read-only memory is disclosed which has programmable memory cells connected to parallel bit lines provided above a semiconductor substrate. The memory cells include NAND cell blocks each of which has a series array of memory cell transistors. Parallel word lines are connected to the control gates of the memory cell transistors, respectively. In a data write mode, a selection transistor in a certain NAND cell block including a selected memory cell is rendered conductive to connect the certain cell block to a corresponding bit line associated therewith. Under such a condition, electrons are tunnel-injected into a floating gate of the selected memory cell transistor, and the threshold value of the certain transistor is increased to be a positive value. A logical data is thus written in the selected memory cell transistor. The data in the selected cell transistor is erased by discharging carriers accumulated in the floating gate thereof to its drain or the substrate, so that the threshold value of the certain transistor is decreased to be a negative value.
Abstract:
An EEPROM for storing multi-level data includes a memory cell array in which electrically erasable and programmable memory cells are arranged in matrix and each of the memory cells has at least three storage states, a write circuit for writing data to the memory cells, first and second write verify means each constituted of a sense amplifier, a data latch circuit and a detection circuit, for verifying an insufficient-written state of a memory cell and an excess-written state of a memory cell, respectively, an additional write circuit for additionally writing data to the memory cell in the insufficient-written state, and an additional erase circuit for additionally erasing data from the memory cell in the excess-written state.
Abstract:
A NAND cell type EEPROM has bit lines, each of which is associated with a NAND cell unit including a series array of four memory cell transistors. Each transistor is a MOSFET with a control gate and a floating gate for data storage. The memory cell transistors are connected at their control gates to word lines, respectively. One end of the NAND cell unit is connected through a first select transistor to a corresponding bit line; the other end thereof is connected via a second select transistor to a source voltage. The memory cell transistors and the select transistors are arranged in a well region formed in a substrate. In an erase mode, the bit line voltage, the substrate voltage and the well voltage are held at a high voltage, whereas the word lines are at zero volts. The gate potential of the select transistors is held at the high voltage, whereby the internal electric field of these select transistors is weakened to improve the dielectric breakdown characteristic thereof.
Abstract:
A semiconductor nonvolatile memory device according to the invention comprises a first cell block having with a current path and a plurality of memory cells, a second cell block having with a current path and a plurality of memory cells, the current path of the second cell block has an end connected to a corresponding end of the current path of the first cell block, a first line electrically connected to the other end of the current path of the first cell block, and a second line electrically connected to the other end of the current path of the second cell block. The first and second lines are made to operate a bit line and a source line, or vise versa, depending on which one of said cell blocks is selected for data retrieval.
Abstract:
According to one embodiment, a nonvolatile semiconductor memory device comprises a first conductive layer, a second conductive layer, a first inter-electrode insulating film, and a third conductive layer stacked above the first conductive layer, a memory film, a semiconductor layer, an insulating member, and a silicide layer. The memory film and the semiconductor layer is formed on the inner surface of through hole provided in the second conductive layer, the first inter-electrode insulating film, and the third conductive layer. The insulating member is buried in a slit dividing the second conductive layer, the first inter-electrode insulating film, and the third conductive layer. The silicide layer is formed on surfaces of the second conductive layer and the third conductive layer in the slit. The distance between the second conductive layer and the third conductive layer along the inner surface of the slit is longer than that of along the stacking direction.
Abstract:
According to one embodiment, a nonvolatile semiconductor memory device includes a stacked structural unit, a semiconductor pillar, a memory layer, an inner insulating film, an outer insulating film and a cap insulating film. The unit includes a plurality of electrode films stacked alternately in a first direction with a plurality of inter-electrode insulating films. The pillar pierces the stacked structural unit in the first direction. The memory layer is provided between the electrode films and the semiconductor pillar. The inner insulating film is provided between the memory layer and the semiconductor pillar. The outer insulating film is provided between the memory layer and the electrode films. The cap insulating film is provided between the outer insulating film and the electrode films, and the cap insulating film has a higher relative dielectric constant than the outer insulating film.
Abstract:
According to one embodiment, a nonvolatile semiconductor memory device includes a first and a second stacked structure, a first and a second semiconductor pillar, a semiconductor connection portion, a first and a second connection portion conductive layer, a first and a second pillar portion memory layer, a first and a second connection portion memory layer. The first and second stacked structures include electrode films and inter-electrode insulating films alternately stacked in a first direction. The second stacked structure is adjacent to the first stacked structure. The first and second semiconductor pillars pierce the first and second stacked structures, respectively. The semiconductor connection portion connects the first and second semiconductor pillars. The first and second pillar portion memory layers are provided between the electrode films and the semiconductor pillar. The first and second connection portion memory layers are provided between the connection portion conductive layers and the semiconductor connection portion.